
OpenFest 2015

System Call Tracing with strace
c© 2015 Michael Kerrisk

man7.org Training and Consulting
http://man7.org/training/
@mkerrisk mtk@man7.org

7 November 2015
Sofia, Bulgaria

@openfestbg #OpenFest2015

Outline

1 Preamble
2 Getting started
3 Tracing child processes
4 Filtering strace output
5 Further strace options

Outline

1 Preamble
2 Getting started
3 Tracing child processes
4 Filtering strace output
5 Further strace options

Who am I?

Maintainer of Linux man-pages (since 2004)
Documents kernel-user-space + C library APIs

˜1000 manual pages
http://www.kernel.org/doc/man-pages/

Linux involvement: API review, testing, and documentation
“Day job”: trainer, writer, programmer

OpenFest 2015 (C) 2015 Michael Kerrisk Preamble 4 / 29

Audience

Programmers?
C/C++ Programmers?

OpenFest 2015 (C) 2015 Michael Kerrisk Preamble 5 / 29

What is a system call?

Various possible answers, from different perspectives
Answer 1: request to kernel to perform a service

Open a file
Execute a new program
Create a new process
Send a message to another process

Answer 2 (programmer’s perspective): “call a function”
fd = open("myfile.txt", O_CREAT|O_RDWR, 0644);

System call looks like any other function call

OpenFest 2015 (C) 2015 Michael Kerrisk Preamble 6 / 29

What is a system call?

Answer 3: entry point providing controlled mechanism to
execute kernel code
User-space programs can’t call functions inside kernel
Syscall = one of few mechanisms by which program can ask
to execute kernel code

Others: /proc, /sys, etc.
Set of system calls is:

Operating-system specific
Can’t run Linux binaries on another OS, and vice versa

Limited/strictly defined by OS
Linux kernel provides 400+ syscalls
syscalls(2) man page

OpenFest 2015 (C) 2015 Michael Kerrisk Preamble 7 / 29

Steps in the execution of a system call

1 Program calls wrapper function in C library
2 Wrapper function

Packages syscall arguments into registers
Puts (unique) syscall number into a register

3 Wrapper flips CPU to kernel mode (user-mode ⇒ kernel-mode)
Execute special machine instruction (e.g., sysenter on x86)
Main effect: CPU can now touch memory marked as accessible
only in kernel mode

4 Kernel executes syscall handler:
Invokes service routine corresponding to syscall number

Do the real work, generate result status

Places return value from service routine in a register
Switches back to user mode, passing control back to wrapper

(kernel-mode ⇒ user-mode)
5 Wrapper function examines syscall return value; on error, copies

error number to errno
OpenFest 2015 (C) 2015 Michael Kerrisk Preamble 8 / 29

Outline

1 Preamble
2 Getting started
3 Tracing child processes
4 Filtering strace output
5 Further strace options

strace(1)

A tool to trace system calls made by a user-space process
Implemented via ptrace(2)

Or: a debugging tool for tracing complete conversation
between application and kernel

Application source code is not required
Answer questions like:

What system calls are employed by application?
Which files does application touch?
What arguments are being passed to each system call?
Which system calls are failing, and why (errno)?

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 10 / 29

strace(1) output

Log information is provided in symbolic form
System call names are shown
We see signal names (not numbers)
Strings printed as characters (up to 32 bytes, by default)
Bit-mask arguments displayed symbolically, using
corresponding bit flag names ORed together
Structures displayed with labeled fields
errno values displayed symbolically + matching error text
“large” arguments and structures are abbreviated by default

fstat (3, { st_dev = makedev (8, 2), st_ino =401567 ,
st_mode = S_IFREG |0755 , st_nlink =1, st_uid =0, st_gid =0,
st_blksize =4096 , st_blocks =280 , st_size =142136 ,
st_atime =2015/02/17 -17:17:25 , st_mtime =2013/12/27 -22:19:58 ,
st_ctime =2014/04/07 -21:44:17 }) = 0

open("/ lib64 / liblzma .so .5", O_RDONLY | O_CLOEXEC) = 3

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 11 / 29

Simple usage: tracing a command at the command line

A very simple C program:
int main(int argc , char *argv []) {
define STR "Hello world\n"

write(STDOUT_FILENO , STR , strlen (STR));
exit(EXIT_SUCCESS);

}

Run strace(1), directing logging output (–o) to a file:
$ strace -o strace .log ./ hello_world
Hello world

(By default, strace output goes to standard error)
B On some systems, may first need to:
echo 0 > /proc/sys/ kernel /yama/ ptrace_scope

Yama LSM disables ptrace(2) to prevent attack escalation;
see man page

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 12 / 29

Simple usage: tracing a command at the command line

$ cat strace .log
execve ("./ hello_world ", ["./ hello_world "], [/* 110 vars */]) = 0
...
access ("/etc/ld.so. preload ", R_OK) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so. cache ", O_RDONLY | O_CLOEXEC) = 3
fstat (3, { st_mode = S_IFREG |0644 , st_size =160311 , ...}) = 0
mmap(NULL , 160311 , PROT_READ , MAP_PRIVATE , 3, 0) = 0 x7fa5ecfc0000
close (3) = 0
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
...
write (1, " Hello world \n", 12) = 12
exit_group (0) = ?
+++ exited with 0 +++

Even simple programs make lots of system calls!
25 in this case (many have been edited from above output)

Most output in this trace relates to finding and loading
shared libraries

First call (execve()) was used by shell to load our program
Only last two system calls were made by our program

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 13 / 29

Simple usage: tracing a command at the command line

$ cat strace .log
execve ("./ hello_world ", ["./ hello_world "], [/* 110 vars */]) = 0
...
access ("/etc/ld.so. preload ", R_OK) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so. cache ", O_RDONLY | O_CLOEXEC) = 3
fstat (3, { st_mode = S_IFREG |0644 , st_size =160311 , ...}) = 0
mmap(NULL , 160311 , PROT_READ , MAP_PRIVATE , 3, 0) = 0 x7fa5ecfc0000
close (3) = 0
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
...
write (1, " Hello world \n", 12) = 12
exit_group (0) = ?
+++ exited with 0 +++

For each system call, we see:
Name of system call
Values passed in/returned via arguments
System call return value
Symbolic errno value (+ explanatory text) on syscall failures

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 14 / 29

A gotcha...

The last call in our program was:
exit(EXIT_SUCCESS);

But strace showed us:
exit_group (0) = ?

Some detective work:
We “know” exit(3) is a library function that calls _exit(2)
But where did exit_group() come from?
_exit(2) man page tells us:
$ man 2 _exit
...
C library / kernel differences

In glibc up to version 2.3 , the _exit () wrapper function
invoked the kernel system call of the same name. Since
glibc 2.3 , the wrapper function invokes exit_group (2) ,
in order to terminate all of the threads in a process .

⇒ may need to dig deeper to understand strace(1) output
OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 15 / 29

Outline

1 Preamble
2 Getting started
3 Tracing child processes
4 Filtering strace output
5 Further strace options

Tracing child processes

By default, strace does not trace children of traced process
–f option causes children to be traced

Each trace line is prefixed by PID
In a program that employs POSIX threads, each line shows
kernel thread ID (gettid())

OpenFest 2015 (C) 2015 Michael Kerrisk Tracing child processes 17 / 29

Tracing child processes: strace/fork_exec.c

1 int main(int argc , char *argv []) {
2 pid_t childPid ;
3 char * newEnv [] = {"ONE =1", "TWO =2", NULL };
4
5 printf ("PID of parent : %ld\n", (long) getpid ());
6 childPid = fork ();
7 if (childPid == 0) { /* Child */
8 printf ("PID of child: %ld\n", (long) getpid ());
9 if (argc > 1) {

10 execve (argv [1], &argv [1], newEnv);
11 errExit (" execve ");
12 }
13 exit(EXIT_SUCCESS);
14 }
15 wait(NULL); /* Parent waits for child */
16 exit(EXIT_SUCCESS);
17 }

$ strace -f -o strace .log ./ fork_exec
PID of parent : 1939
PID of child: 1940

OpenFest 2015 (C) 2015 Michael Kerrisk Tracing child processes 18 / 29

Tracing child processes: strace/fork_exec.c

$ cat strace .log
1939 execve ("./ fork_exec ", ["./ fork_exec "], [/* 110 vars */]) = 0
...
1939 clone (child_stack =0, flags = CLONE_CHILD_CLEARTID |

CLONE_CHILD_SETTID |SIGCHLD , child_tidptr =0 x7fe484b2ea10) = 1940
1939 wait4 (-1, <unfinished ... >
1940 write (1, "PID of child : 1940\ n", 21) = 21
1940 exit_group (0) = ?
1940 +++ exited with 0 +++
1939 <... wait4 resumed > NULL , 0, NULL) = 1940
1939 --- SIGCHLD { si_signo =SIGCHLD , si_code = CLD_EXITED ,

si_pid =1940 , si_uid =1000 , si_status =0, si_utime =0,
si_stime =0} ---

1939 exit_group (0) = ?
1939 +++ exited with 0 +++

Each line of trace output is prefixed with corresponding PID
Inside glibc, fork() is actually a wrapper that calls clone(2)
wait() is a wrapper that calls wait4(2)
We see two lines of output for wait4() because call blocks
and then resumes
strace shows us that parent received a SIGCHLD signal

OpenFest 2015 (C) 2015 Michael Kerrisk Tracing child processes 19 / 29

Outline

1 Preamble
2 Getting started
3 Tracing child processes
4 Filtering strace output
5 Further strace options

Selecting system calls to be traced

strace –e can be used to select system calls to be traced
Syntax is a little complex ⇒ we’ll look at simple, common
use cases

–e trace=<syscall>[,<syscall>...]
Specify system call(s) that should be traced
Other system calls are ignored

$ strace -o strace .log -e trace =open ,close ls

–e trace=!<syscall>[,<syscall>...]
Exclude specified system call(s) from tracing

Some applications do bizarre things (e.g., calling
gettimeofday() 1000s of times/sec.)

B “!” needs to be quoted to avoid shell interpretation

OpenFest 2015 (C) 2015 Michael Kerrisk Filtering strace output 21 / 29

Selecting system calls by category

–e trace=<syscall-category> specifies a category of system
calls to trace
Categories include:

file: trace all system calls that take a filename as argument
open(), stat(), truncate(), chmod(), setxattr(), link()...

desc: trace file-descriptor-related system calls
read(), write(), open(), close(), fsetxattr(), poll(), select(),
pipe(), fcntl(), epoll_create(), epoll_wait()...

process: trace process management system calls
fork(), clone(), exit_group(), execve(), wait4(), unshare()...

network: trace network-related system calls
socket(), bind(), listen(), connect(), sendmsg()...

memory: trace memory-mapping-related system calls
mmap(), mprotect(), mlock()...

OpenFest 2015 (C) 2015 Michael Kerrisk Filtering strace output 22 / 29

Filtering signals

strace –e signal=set
Trace only specified set of signals
“sig” prefix in names is optional; following are equivalent:
$ strace -o strace .log -e signal =sigio ,int ls > /dev/null
$ strace -o strace .log -e signal =io ,int ls > /dev/null

strace –e signal=!set
Exclude specified signals from tracing

OpenFest 2015 (C) 2015 Michael Kerrisk Filtering strace output 23 / 29

Filtering by pathname

strace –P pathname: trace only system calls that access file
at pathname

Specify multiple –P options to trace multiple paths
Example:
$ strace -o strace .log -P / lib64 /libc.so .6 ls > /dev/null
Requested path ’/ lib64 /libc.so .6 ’ resolved into

’/usr/ lib64 /libc -2.18. so ’
$ cat strace .log
open("/ lib64 /libc.so .6", O_RDONLY | O_CLOEXEC) = 3
read(3, "\177 ELF \2\1\1\3\0\0\0\0\0\0\0\0\3\0 >\0\1\0\0\0 p\36

\2\0\0\0\0\0 "... , 832) = 832
fstat (3, { st_mode = S_IFREG |0755 , st_size =2093096 , ...}) = 0
mmap(NULL , 3920480 , PROT_READ |PROT_EXEC ,

MAP_PRIVATE | MAP_DENYWRITE , 3, 0) = 0 x7f8511fa3000
mmap (0 x7f8512356000 , 24576 , PROT_READ | PROT_WRITE ,

MAP_PRIVATE | MAP_FIXED | MAP_DENYWRITE , 3, 0 x1b3000)
= 0 x7f8512356000

close (3) = 0
+++ exited with 0 +++

strace noticed that the specified file was opened on FD 3,
and also traced operations on that FD

OpenFest 2015 (C) 2015 Michael Kerrisk Filtering strace output 24 / 29

Outline

1 Preamble
2 Getting started
3 Tracing child processes
4 Filtering strace output
5 Further strace options

Obtaining a system call summary

strace –c counts time, calls, and errors for each system call
and reports a summary on program exit

$ strace -c who > /dev/null
% time seconds usecs /call calls errors syscall
------ ----------- ----------- --------- --------- --------------

21.77 0.000648 9 72 alarm
14.42 0.000429 9 48 rt_sigaction
13.34 0.000397 8 48 fcntl

8.84 0.000263 5 48 read
7.29 0.000217 13 17 2 kill
6.79 0.000202 6 33 1 stat
5.41 0.000161 5 31 mmap
4.44 0.000132 4 31 6 open
2.89 0.000086 3 29 close
2.86 0.000085 43 2 socket
2.82 0.000084 42 2 2 connect

...
------ ----------- ----------- --------- --------- --------------
100.00 0.002976 442 13 total

OpenFest 2015 (C) 2015 Michael Kerrisk Further strace options 26 / 29

Tracing live processes

–p PID: trace running process with specified PID
Type Control-C to cease tracing
To trace multiple processes, specify –p multiple times
Can only trace processes you own
B tracing a process can heavily affect performance

E.g., two orders of magnitude
Think twice before using in a production environment

–p PID -f: will trace all threads in specified process

OpenFest 2015 (C) 2015 Michael Kerrisk Further strace options 27 / 29

Further strace options

–v: don’t abbreviate arguments (structures, etc.)
Output can be quite verbose...

–s strsize: maximum number of bytes to display for strings
Default is 32 characters
Pathnames are always printed in full

Various options show start time or duration of system calls
–t, –tt, –ttt, –T

–i: print value of instruction pointer on each system call

OpenFest 2015 (C) 2015 Michael Kerrisk Further strace options 28 / 29

Thanks!
mtk@man7.org @mkerrisk
Slides at http://man7.org/conf/

Linux/UNIX system programming training (and more)
http://man7.org/training/

The Linux Programming Interface, http://man7.org/tlpi/

	System Call Tracing with strace
	Preamble
	Getting started
	Tracing child processes
	Filtering strace output
	Further strace options

