OpenFest 2015

System Call Tracing with strace

(© 2015 Michael Kerrisk
man7.org Training and Consulting
http://man7.org/training/
Omkerrisk ~ mtk@man7.org

7 November 2015
Sofia, Bulgaria
@openfestbg #0OpenFest2015

Outline

1 Preamble

2 Getting started

3 Tracing child processes
4 Filtering strace output
5 Further strace options

Outline

1 Preamble

Who am |7

@ Maintainer of Linux man-pages (since 2004)
o Documents kernel-user-space + C library APls
@ 71000 manual pages

o http://www.kernel.org/doc/man-pages/
@ Linux involvement: API review, testing, and documentation

o “Day job": trainer, writer, programmer

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Preamble 4/29

Audience

o Programmers?

o C/C++ Programmers?

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk ~ Preamble 5/29

What is a system call?

o Various possible answers, from different perspectives
o Answer 1: request to kernel to perform a service

o Answer 2 (programmer’s perspective): “call a function”
o fd = open("myfile.txt", O_CREAT|0_RDWR, 0644);

man?7.org

4]

(]

[~

[~

o System call looks like any other function call

Open a file
Execute a new program

Create a new process

Send a message to another process

OpenFest 2015

(C) 2015 Michael Kerrisk

Preamble

6/29

What is a system call?

@ Answer 3: entry point providing controlled mechanism to
execute kernel code
@ User-space programs can’t call functions inside kernel
@ Syscall = one of few mechanisms by which program can ask
to execute kernel code
o Others: /proc, /sys, etc.
o Set of system calls is:
o Operating-system specific
@ Can't run Linux binaries on another OS, and vice versa

o Limited/strictly defined by OS
o Linux kernel provides 400+ syscalls

o syscalls(2) man page

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk ~ Preamble 7/29

Steps in the execution of a system call

Q@ Program calls wrapper function in C library
Q@ Wrapper function
o Packages syscall arguments into registers
o Puts (unique) syscall number into a register
© Wrapper flips CPU to kernel mode (user-mode = kernel-mode)
o Execute special machine instruction (e.g., sysenter on x86)
o Main effect: CPU can now touch memory marked as accessible

only in kernel mode

Q@ Kernel executes syscall handler:
o Invokes service routine corresponding to syscall number
o Do the real work, generate result status
o Places return value from service routine in a register
o Switches back to user mode, passing control back to wrapper
o (kernel-mode = user-mode)

© Wrapper function examines syscall return value; on error, copies

error number to errno
man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk ~ Preamble 8/29

Outline

2 Getting started

strace(1)

)

man7.org

A tool to trace system calls made by a user-space process
o Implemented via ptrace(2)

Or: a debugging tool for tracing complete conversation
between application and kernel

o Application source code is not required
Answer questions like:
o What system calls are employed by application?
o Which files does application touch?
o What arguments are being passed to each system call?

o Which system calls are failing, and why (errno)?

OpenFest 2015

(C) 2015 Michael Kerrisk Getting started

10 / 29

strace(1) output

@ Log information is provided in symbolic form

4]

(*]

(*]

(*]

4]

System call names are shown
We see signal names (not numbers)
Strings printed as characters (up to 32 bytes, by default)

Bit-mask arguments displayed symbolically, using
corresponding bit flag names ORed together

Structures displayed with labeled fields
errno values displayed symbolically + matching error text

“large” arguments and structures are abbreviated by default

fstat (3, {st_dev=makedev(8, 2), st_ino=401567,
st_
st_blksize=4096, st_blocks=280, st_size=142136,

st
st

open("/1ib64/1liblzma.so.5", O_RDONLY|O_CLOEXEC) = 3

mode=S_IFREG|0755, st_nlink=1, st_uid=0, st_gid=0,

atime=2015/02/17-17:17:25, st_mtime=2013/12/27-22:19:58,
ctime=2014/04/07-21:44:17}) = 0

man7.org

OpenFest 2015

(C) 2015 Michael Kerrisk Getting started 11 /29

Simple usage: tracing a command at the command line

@ A very simple C program:

int main(int argc, char *argv[]) {

#define STR "Hello world\n"
write (STDOUT_FILENO, STR, strlen(STR));
exit (EXIT_SUCCESS);

@ Run strace(1), directing logging output (—o) to a file:

$ strace -o strace.log ./hello_world
Hello world

o (By default, strace output goes to standard error)

o /\ On some systems, may first need to:

‘# echo 0 > /proc/sys/kernel/yama/ptrace_scope

o Yama LSM disables ptrace(2) to prevent attack escalation;
see man page

man7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 12 / 29

Simple usage: tracing a command at the command line

$ cat strace.log
execve("./hello_world", ["./hello_world"]l, [/* 110 wars */]1) = 0

éééess("/etc/ld.so.preload", R_0OK) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat (3, {st_mode=S_IFREG|0644, st_size=160311, ...}) = 0
mmap (NULL, 160311, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fabecfc0000
close (3) 0

open("/1ib64/1libc.so.6", O_RDONLY|O_CLOEXEC) = 3

write(l, "Hello world\an", 12)
exit_group (0)
+++ exited with 0 +++

12
?

o Even simple programs make lots of system calls!
o 25 in this case (many have been edited from above output)

@ Most output in this trace relates to finding and loading
shared libraries

o First call (execve()) was used by shell to load our program

o Only last two system calls were made by our program

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 13 /29

Simple usage: tracing a command at the command line

$ cat strace.log
execve("./hello_world", ["./hello_world"]l, [/* 110 vars */]) = 0

access("/etc/ld.so.preload", R_OK) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat (3, {st_mode=S_IFREG|0644, st_size=160311, ...}) = 0
mmap (NULL, 160311, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fabecfc0000
close (3) 0

open("/1ib64/1libc.so.6", O_RDONLY|O_CLOEXEC) = 3

write(1, "Hello world\n", 12)
exit_group (0)
+++ exited with 0 +++

12
?

For each system call, we see:

@ Name of system call
@ Values passed in/returned via arguments
@ System call return value

@ Symbolic errno value (+ explanatory text) on syscall failures

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 14 / 29

A gotcha...

@ The last call in our program was:
‘exit(EXIT_SUCCESS); ‘

o But strace showed us:

‘exit_group(o) =7 ‘

@ Some detective work:
o We “know" exit(3) is a library function that calls _exit(2)

o But where did exit_group() come from?

o _exit(2) man page tells us:

$ man 2 _exit

C library/kernel differences

In glibc up to version 2.3, the _exit() wrapper function
invoked the kermnel system call of the same name. Since
glibc 2.3, the wrapper function invokes exit_group(2),
in order to terminate all of the threads in a process.

@ = may need to dig deeper to understand strace(1) output

man7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Getting started 15 / 29

Outline

3 Tracing child processes

Tracing child processes

o By default, strace does not trace children of traced process

o —f option causes children to be traced
o Each trace line is prefixed by PID

o In a program that employs POSIX threads, each line shows
kernel thread ID (gettid())

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Tracing child processes 17 / 29

Tracing child processes: strace/fork exec.c

int

O© 00 ~NO O WN -

10

12
13
14
15
16
17|}

main(int argc, char *argv[]) {
pid_t childPid;
char *newEnv[] = {"ONE=1", "Tw0=2", NULL};

printf ("PID of parent: %1ld\n", (long) getpid());
childPid = fork();
if (childPid == 0) { /* Child */
printf ("PID of child: %1d\n", (long) getpid())
if (argec > 1) {
execve (argv [1], &argv[1], newEnv);
errExit ("execve");

}
exit (EXIT_SUCCESS);
}
wait (NULL) ; /* Parent waits for child */

exit (EXIT_SUCCESS);

>

PID
PID

$ strace -f -o strace.log ./fork_exec

of parent: 1939
of child: 1940

man7’.org

OpenFest 2015

(C) 2015 Michael Kerrisk Tracing child processes

18 / 29

Tracing child processes: strace/fork exec.c

$ cat strace.log
1939 execve("./fork_exec", ["./fork_exec"]l, [/* 110 wars */]1) = 0

1939 clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|
CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x7fe484b2eall0) = 1940

1939 wait4 (-1, <unfinished ...>

1940 write(l, "PID of child: 1940\n", 21) = 21

1940 exit_group (0) =7

1940 +++ exited with 0 +++

1939 <... wait4 resumed> NULL, 0O, NULL) = 1940

1939 --- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED,
si_pid=1940, si_uid=1000, si_status=0, si_utime=0,
si_stime=0} ---

1939 exit_group (0) =7

1939 +++ exited with O +++

o Each line of trace output is prefixed with corresponding PID
o Inside glibc, fork() is actually a wrapper that calls clone(2)
o wait() is a wrapper that calls wait4(2)

@ We see two lines of output for wait4() because call blocks
and then resumes

o strace shows us that parent received a SIGCHLD signal

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Tracing child processes 19 / 29

Outline

4 Filtering strace output

Selecting system calls to be traced

@ strace —e can be used to select system calls to be traced

o Syntax is a little complex = we'll look at simple, common
use cases

o —e trace=<syscall>[,<syscall>...]
o Specify system call(s) that should be traced

o Other system calls are ignored

$ strace -o strace.log -e trace=open,close 1ls

o —e trace=!<syscall>[<syscall>...]
o Exclude specified system call(s) from tracing

o Some applications do bizarre things (e.g., calling
gettimeofday() 1000s of times/sec.)

o /\ “I" needs to be quoted to avoid shell interpretation

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Filtering strace output 21 /29

Selecting system calls by category

o —e trace=<syscall-category> specifies a category of system
calls to trace

o Categories include:
o file: trace all system calls that take a filename as argument
o open(), stat(), truncate(), chmod(), setxattr(), link()...
o desc: trace file-descriptor-related system calls

o read(), write(), open(), close(), fsetxattr(), poll(), select(),
pipe(), fentl(), epoll_create(), epoll_wait()...

(4]

process: trace process management system calls
o fork(), clone(), exit_group(), execve(), wait4(), unshare()...

o network: trace network-related system calls
o socket(), bind(), listen(), connect(), sendmsg()...

e memory: trace memory-mapping-related system calls
o mmap(), mprotect(), mlock()...

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Filtering strace output 22 /29

Filtering signals

@ strace —e signal=set
o Trace only specified set of signals
o ‘“sig” prefix in names is optional; following are equivalent:

-e signal=sigio,int 1s > /dev/null

$ strace -o strace.log
-e signal=io,int 1ls > /dev/null

$ strace -o strace.log

o strace —e signal=Iset
o Exclude specified signals from tracing

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Filtering strace output 23 /29

Filtering by pathname

strace —P pathname: trace only system calls that access file
at pathname

o Specify multiple —P options to trace multiple paths

Example:

$ strace -o strace.log -P /1lib64/libc.so.6 1ls > /dev/null

Requested path ’/1ib64/1libc.so.6’ resolved into
’/usr/1ib64/1ibc-2.18.s0"

$ cat strace.log

open("/1ib64/1libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read (3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p\36
\2\0\0\0\O\O"..., 832) = 832

fstat (3, {st_mode=S_IFREG|0755, st_size=2093096, ...}) =0

mmap (NULL, 3920480, PROT_READ|PROT_EXEC,
MAP_PRIVATE |MAP_DENYWRITE, 3, 0) = 0x7£f8511fa3000

mmap (0x7£8512356000, 24576, PROT_READ|PROT_WRITE,
MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, 0x1b3000)
= 0x7£8512356000

close (3) =0

+++ exited with O +++

man?7.org

o strace noticed that the specified file was opened on FD 3,
and also traced operations on that FD

OpenFest 2015

(C) 2015 Michael Kerrisk Filtering strace output 24 /29

Outline

5 Further strace options

Obtaining a system call summary

@ strace —c counts time, calls, and errors for each system call
and reports a summary on program exit

$ strace -c who > /dev/null

% time seconds usecs/call calls errors syscall
21.77 0.000648 9 72 alarm
14.42 0.000429 9 48 rt_sigaction
13.34 0.000397 8 48 fcntl
8.84 0.000263 5 48 read
7.29 0.000217 13 17 2 kill
6.79 0.000202 6 33 1 stat
5.41 0.000161 5 31 mmap
4.44 0.000132 4 31 6 open
2.89 0.000086 3 29 close
2.86 0.000085 43 2 socket
2.82 0.000084 42 2 2 connect

100.00 0.002976 442 13 total

man?7.org

OpenFest 2015

(C) 2015 Michael Kerrisk

Further strace options

26 / 29

Tracing live processes

@ —p PID: trace running process with specified PID
o Type Control-C to cease tracing

o To trace multiple processes, specify —p multiple times
o Can only trace processes you own

e /\ tracing a process can heavily affect performance
o E.g., two orders of magnitude

o Think twice before using in a production environment

o —p PID -f. will trace all threads in specified process

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Further strace options 27 /29

Further strace options

@ —v: don't abbreviate arguments (structures, etc.)
o Output can be quite verbose...

@ —s strsize: maximum number of bytes to display for strings
o Default is 32 characters
o Pathnames are always printed in full

@ Various options show start time or duration of system calls
o —t, —tt, —ttt, =T

@ —i: print value of instruction pointer on each system call

man?7.org

OpenFest 2015 (C) 2015 Michael Kerrisk Further strace options 28 /29

Thanks!

mtk@man7.org ©@mbkerrisk
Slides at http://man7.org/conf/

Linux/UNIX system programming training (and more)
http://man7.org/training/

The Linux Programming Interface, http://man7.org/tlpi/

THE LINUX
PROGRAMMING
INTERFACE

jbook

	System Call Tracing with strace
	Preamble
	Getting started
	Tracing child processes
	Filtering strace output
	Further strace options

