|
NAME | SYNOPSIS | DESCRIPTION | EXAMPLE | ENVIRONMENT VARIABLES | BUGS | RESOURCES | COPYRIGHTS | THANKS | AUTHORS | SEE ALSO | COLOPHON |
|
|
|
LTTNG-UST(3) LTTng Manual LTTNG-UST(3)
lttng-ust - LTTng user space tracing
#include <lttng/tracepoint.h>
#define LTTNG_UST_TP_ARGS(args...)
#define LTTNG_UST_TP_ENUM_VALUES(values...)
#define LTTNG_UST_TP_FIELDS(fields...)
#define LTTNG_UST_TRACEPOINT_ENUM(prov_name, enum_name, mappings)
#define LTTNG_UST_TRACEPOINT_EVENT(prov_name, t_name, args, fields)
#define LTTNG_UST_TRACEPOINT_EVENT_CLASS(cls_prov_name, cls_name,
args, fields)
#define LTTNG_UST_TRACEPOINT_EVENT_INSTANCE(cls_prov_name, cls_name,
inst_prov_name, t_name, args)
#define LTTNG_UST_TRACEPOINT_LOGLEVEL(prov_name, t_name, level)
#define lttng_ust_do_tracepoint(prov_name, t_name, ...)
#define lttng_ust_field_array(int_type, field_name, expr, count)
#define lttng_ust_field_array_nowrite(int_type, field_name, expr, count)
#define lttng_ust_field_array_hex(int_type, field_name, expr, count)
#define lttng_ust_field_array_nowrite_hex(int_type, field_name, expr,
count)
#define lttng_ust_field_array_network(int_type, field_name, expr, count)
#define lttng_ust_field_array_network_nowrite(int_type, field_name,
expr, count)
#define lttng_ust_field_array_network_hex(int_type, field_name, expr,
count)
#define lttng_ust_field_array_network_nowrite_hex(int_type, field_name,
expr, count)
#define lttng_ust_field_array_text(char, field_name, expr, count)
#define lttng_ust_field_array_text_nowrite(char, field_name, expr,
count)
#define lttng_ust_field_enum(prov_name, enum_name, int_type, field_name,
expr)
#define lttng_ust_field_enum_nowrite(prov_name, enum_name, int_type,
field_name, expr)
#define lttng_ust_field_enum_value(label, value)
#define lttng_ust_field_enum_range(label, start, end)
#define lttng_ust_field_float(float_type, field_name, expr)
#define lttng_ust_field_float_nowrite(float_type, field_name, expr)
#define lttng_ust_field_integer(int_type, field_name, expr)
#define lttng_ust_field_integer_hex(int_type, field_name, expr)
#define lttng_ust_field_integer_network(int_type, field_name, expr)
#define lttng_ust_field_integer_network_hex(int_type, field_name, expr)
#define lttng_ust_field_integer_nowrite(int_type, field_name, expr)
#define lttng_ust_field_sequence(int_type, field_name, expr,
len_type, len_expr)
#define lttng_ust_field_sequence_nowrite(int_type, field_name, expr,
len_type, len_expr)
#define lttng_ust_field_sequence_hex(int_type, field_name, expr,
len_type, len_expr)
#define lttng_ust_field_sequence_nowrite_hex(int_type, field_name, expr,
len_type, len_expr)
#define lttng_ust_field_sequence_network(int_type, field_name, expr,
len_type, len_expr)
#define lttng_ust_field_sequence_network_nowrite(int_type, field_name,
expr, len_type,
len_expr)
#define lttng_ust_field_sequence_network_hex(int_type, field_name, expr,
len_type, len_expr)
#define lttng_ust_field_sequence_network_nowrite_hex(int_type,
field_name,
expr, len_type,
len_expr)
#define lttng_ust_field_sequence_text(char, field_name, expr, len_type,
len_expr)
#define lttng_ust_field_sequence_text_nowrite(char, field_name, expr,
len_type, len_expr)
#define lttng_ust_field_string(field_name, expr)
#define lttng_ust_field_string_nowrite(field_name, expr)
#define lttng_ust_tracepoint(prov_name, t_name, ...)
#define lttng_ust_tracepoint_enabled(prov_name, t_name)
Link with, following this manual page:
• -llttng-ust -ldl
• If you define _LGPL_SOURCE before including
<lttng/tracepoint.h> (directly or indirectly): -llttng-ust-
common
The Linux Trace Toolkit: next generation <http://lttng.org/> is an
open source software package used for correlated tracing of the
Linux kernel, user applications, and user libraries.
LTTng-UST is the user space tracing component of the LTTng
project. It is a port to user space of the low-overhead tracing
capabilities of the LTTng Linux kernel tracer. The liblttng-ust
library is used to trace user applications and libraries.
Note
This man page is about the liblttng-ust library. The LTTng-UST
project also provides Java and Python packages to trace
applications written in those languages. How to instrument and
trace Java and Python applications is documented in the online
LTTng documentation <http://lttng.org/docs/>.
There are three ways to use liblttng-ust:
• Using the lttng_ust_tracef(3) API, which is similar to
printf(3).
• Using the lttng_ust_tracelog(3) API, which is
lttng_ust_tracef(3) with a log level parameter.
• Defining your own tracepoints. See the Creating a tracepoint
provider section below.
Compatibility with previous APIs
Since LTTng-UST 2.13, the LTTNG_UST_COMPAT_API_VERSION definition
controls which LTTng-UST APIs are available (compiled):
Undefined
All APIs are available.
N (0 or positive integer)
API version N, and all the following existing APIs, are
available. Previous APIs are not available (not compiled).
The following table shows the mapping from LTTng-UST versions (up
to LTTng-UST 2.15.0-pre) to available API versions:
┌───────────────────┬────────────────────────┐
│ LTTng-UST version │ Available API versions │
├───────────────────┼────────────────────────┤
│ │ │
│ 2.0 to 2.12 │ 0 │
├───────────────────┼────────────────────────┤
│ │ │
│ 2.13 │ 0 and 1 │
└───────────────────┴────────────────────────┘
This manual page only documents version 1 of the API.
If you wish to have access to version 0 of the API (for example,
the tracepoint(), ctf_integer(), and TRACEPOINT_EVENT() macros),
then either don’t define LTTNG_UST_COMPAT_API_VERSION, or define
it to 0 before including any LTTng-UST header.
Creating a tracepoint provider
Creating a tracepoint provider is the first step of using
liblttng-ust. The next steps are:
• Instrumenting your application with lttng_ust_tracepoint()
calls
• Building your application with LTTng-UST support, either
statically or dynamically.
A tracepoint provider is a compiled object containing the event
probes corresponding to your custom tracepoint definitions. A
tracepoint provider contains the code to get the size of an event
and to serialize it, amongst other things.
To create a tracepoint provider, start with the following
tracepoint provider header template:
#undef LTTNG_UST_TRACEPOINT_PROVIDER
#define LTTNG_UST_TRACEPOINT_PROVIDER my_provider
#undef LTTNG_UST_TRACEPOINT_INCLUDE
#define LTTNG_UST_TRACEPOINT_INCLUDE "./tp.h"
#if !defined(_TP_H) || \
defined(LTTNG_UST_TRACEPOINT_HEADER_MULTI_READ)
#define _TP_H
#include <lttng/tracepoint.h>
/*
* LTTNG_UST_TRACEPOINT_EVENT(), LTTNG_UST_TRACEPOINT_EVENT_CLASS(),
* LTTNG_UST_TRACEPOINT_EVENT_INSTANCE(),
* LTTNG_UST_TRACEPOINT_LOGLEVEL(), and `LTTNG_UST_TRACEPOINT_ENUM()`
* are used here.
*/
#endif /* _TP_H */
#include <lttng/tracepoint-event.h>
In this template, the tracepoint provider is named my_provider
(LTTNG_UST_TRACEPOINT_PROVIDER definition). The file needs to bear
the name of the LTTNG_UST_TRACEPOINT_INCLUDE definition (tp.h in
this case). Between #include <lttng/tracepoint.h> and #endif go
the invocations of the LTTNG_UST_TRACEPOINT_EVENT(),
LTTNG_UST_TRACEPOINT_EVENT_CLASS(),
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE(),
LTTNG_UST_TRACEPOINT_LOGLEVEL(), and LTTNG_UST_TRACEPOINT_ENUM()
macros.
Note
You can avoid writing the prologue and epilogue boilerplate in
the template file above by using the lttng-gen-tp(1) tool
shipped with LTTng-UST.
The tracepoint provider header file needs to be included in a
source file which looks like this:
#define LTTNG_UST_TRACEPOINT_CREATE_PROBES
#include "tp.h"
Together, those two files (let’s call them tp.h and tp.c) form the
tracepoint provider sources, ready to be compiled.
You can create multiple tracepoint providers to be used in a
single application, but each one must have its own header file.
The LTTNG_UST_TRACEPOINT_EVENT() usage section below shows how to
use the LTTNG_UST_TRACEPOINT_EVENT() macro to define the actual
tracepoints in the tracepoint provider header file.
See the EXAMPLE section below for a complete example.
LTTNG_UST_TRACEPOINT_EVENT() usage
The LTTNG_UST_TRACEPOINT_EVENT() macro is used in a template
provider header file (see the Creating a tracepoint provider
section above) to define LTTng-UST tracepoints.
The LTTNG_UST_TRACEPOINT_EVENT() usage template is as follows:
LTTNG_UST_TRACEPOINT_EVENT(
/* Tracepoint provider name */
my_provider,
/* Tracepoint/event name */
my_tracepoint,
/* List of tracepoint arguments (input) */
LTTNG_UST_TP_ARGS(
...
),
/* List of fields of eventual event (output) */
LTTNG_UST_TP_FIELDS(
...
)
)
The LTTNG_UST_TP_ARGS() macro contains the input arguments of the
tracepoint. Those arguments can be used in the argument
expressions of the output fields defined in LTTNG_UST_TP_FIELDS().
The format of the LTTNG_UST_TP_ARGS() parameters is: C type, then
argument name; repeat as needed, up to ten times. For example:
LTTNG_UST_TP_ARGS(
int, my_int,
const char *, my_string,
FILE *, my_file,
double, my_float,
struct my_data *, my_data
)
The LTTNG_UST_TP_FIELDS() macro contains the output fields of the
tracepoint, that is, the actual data that can be recorded in the
payload of an event emitted by this tracepoint.
The LTTNG_UST_TP_FIELDS() macro contains a list of
lttng_ust_field_*() macros NOT separated by commas. The available
macros are documented in the Available lttng_ust_field_*() field
type macros section below.
Available field macros
This section documents the available lttng_ust_field_*() macros
that can be inserted in the LTTNG_UST_TP_FIELDS() macro of the
LTTNG_UST_TRACEPOINT_EVENT() macro.
Standard integer, displayed in base 10:
lttng_ust_field_integer(int_type, field_name, expr)
lttng_ust_field_integer_nowrite(int_type, field_name, expr)
Standard integer, displayed in base 16:
lttng_ust_field_integer_hex(int_type, field_name, expr)
Integer in network byte order (big endian), displayed in base 10:
lttng_ust_field_integer_network(int_type, field_name, expr)
Integer in network byte order, displayed in base 16:
lttng_ust_field_integer_network_hex(int_type, field_name, expr)
Floating point number:
lttng_ust_field_float(float_type, field_name, expr)
lttng_ust_field_float_nowrite(float_type, field_name, expr)
Null-terminated string:
lttng_ust_field_string(field_name, expr)
lttng_ust_field_string_nowrite(field_name, expr)
Statically-sized array of integers (_hex versions displayed in
hexadecimal, _network versions in network byte order):
lttng_ust_field_array(int_type, field_name, expr, count)
lttng_ust_field_array_nowrite(int_type, field_name, expr, count)
lttng_ust_field_array_hex(int_type, field_name, expr, count)
lttng_ust_field_array_nowrite_hex(int_type, field_name, expr, count)
lttng_ust_field_array_network(int_type, field_name, expr, count)
lttng_ust_field_array_network_nowrite(int_type, field_name, expr,
count)
lttng_ust_field_array_network_hex(int_type, field_name, expr, count)
lttng_ust_field_array_network_nowrite_hex(int_type, field_name,
expr, count)
Statically-sized array, printed as text; no need to be
null-terminated:
lttng_ust_field_array_text(char, field_name, expr, count)
lttng_ust_field_array_text_nowrite(char, field_name, expr, count)
Dynamically-sized array of integers (_hex versions displayed in
hexadecimal, _network versions in network byte order):
lttng_ust_field_sequence(int_type, field_name, expr, len_type,
len_expr)
lttng_ust_field_sequence_nowrite(int_type, field_name, expr,
len_type, len_expr)
lttng_ust_field_sequence_hex(int_type, field_name, expr, len_type,
len_expr)
lttng_ust_field_sequence_nowrite_hex(int_type, field_name, expr,
len_type, len_expr)
lttng_ust_field_sequence_network(int_type, field_name, expr,
len_type, len_expr)
lttng_ust_field_sequence_network_nowrite(int_type, field_name, expr,
len_type, len_expr)
lttng_ust_field_sequence_network_hex(int_type, field_name, expr,
len_type, len_expr)
lttng_ust_field_sequence_network_nowrite_hex(int_type, field_name,
expr, len_type,
len_expr)
Dynamically-sized array, displayed as text; no need to be
null-terminated:
lttng_ust_field_sequence_text(char, field_name, expr, len_type,
len_expr)
lttng_ust_field_sequence_text_nowrite(char, field_name, expr,
len_type, len_expr)
Enumeration. The enumeration field must be defined before using
this macro with the LTTNG_UST_TRACEPOINT_ENUM() macro. See the
LTTNG_UST_TRACEPOINT_ENUM() usage section for more information.
lttng_ust_field_enum(prov_name, enum_name, int_type, field_name,
expr)
lttng_ust_field_enum_nowrite(prov_name, enum_name, int_type,
field_name, expr)
The parameters are:
count
Number of elements in array/sequence. This must be known at
compile time.
enum_name
Name of an enumeration field previously defined with the
LTTNG_UST_TRACEPOINT_ENUM() macro. See the
LTTNG_UST_TRACEPOINT_ENUM() usage section for more
information.
expr
C expression resulting in the field value. This expression can
use one or more arguments passed to the tracepoint. The
arguments of a given tracepoint are defined in the
LTTNG_UST_TP_ARGS() macro (see the Creating a tracepoint
provider section above).
field_name
Event field name (C identifier syntax, NOT a literal string).
float_type
Float C type (float or double). The size of this type
determines the size of the floating point number field.
int_type
Integer C type. The size of this type determines the size of
the integer/enumeration field.
len_expr
C expression resulting in the sequence length. This expression
can use one or more arguments passed to the tracepoint.
len_type
Unsigned integer C type of sequence length.
prov_name
Tracepoint provider name. This must be the same as the
tracepoint provider name used in a previous field definition.
The _nowrite versions omit themselves from the recorded trace, but
are otherwise identical. Their primary purpose is to make some of
the event context available to the event filters without having to
commit the data to sub-buffers. See lttng-enable-event(1) to learn
more about dynamic event filtering.
See the EXAMPLE section below for a complete example.
LTTNG_UST_TRACEPOINT_ENUM() usage
An enumeration field is a list of mappings between an integers, or
a range of integers, and strings (sometimes called labels or
enumerators). Enumeration fields can be used to have a more
compact trace when the possible values for a field are limited.
An enumeration field is defined with the
LTTNG_UST_TRACEPOINT_ENUM() macro:
LTTNG_UST_TRACEPOINT_ENUM(
/* Tracepoint provider name */
my_provider,
/* Enumeration name (unique in the whole tracepoint provider) */
my_enum,
/* Enumeration mappings */
LTTNG_UST_TP_ENUM_VALUES(
...
)
)
LTTNG_UST_TP_ENUM_VALUES() contains a list of enumeration
mappings, NOT separated by commas. Two macros can be used in the
LTTNG_UST_TP_ENUM_VALUES(): lttng_ust_field_enum_value() and
lttng_ust_field_enum_range().
lttng_ust_field_enum_value() is a single value mapping:
lttng_ust_field_enum_value(label, value)
This macro maps the given label string to the value value.
lttng_ust_field_enum_range() is a range mapping:
lttng_ust_field_enum_range(label, start, end)
This macro maps the given label string to the range of integers
from start to end, inclusively. Range mappings may overlap, but
the behaviour is implementation-defined: each trace reader handles
overlapping ranges as it wishes.
See the EXAMPLE section below for a complete example.
LTTNG_UST_TRACEPOINT_EVENT_CLASS() usage
A tracepoint class is a class of tracepoints sharing the same
field types and names. A tracepoint instance is one instance of
such a declared tracepoint class, with its own event name.
LTTng-UST creates one event serialization function per tracepoint
class. Using LTTNG_UST_TRACEPOINT_EVENT() creates one tracepoint
class per tracepoint definition, whereas using
LTTNG_UST_TRACEPOINT_EVENT_CLASS() and
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE() creates one tracepoint
class, and one or more tracepoint instances of this class. In
other words, many tracepoints can reuse the same serialization
code. Reusing the same code, when possible, can reduce cache
pollution, thus improve performance.
The LTTNG_UST_TRACEPOINT_EVENT_CLASS() macro accepts the same
parameters as the LTTNG_UST_TRACEPOINT_EVENT() macro, except that
instead of an event name, its second parameter is the tracepoint
class name:
#define LTTNG_UST_TRACEPOINT_PROVIDER my_provider
/* ... */
LTTNG_UST_TRACEPOINT_EVENT_CLASS(
/* Tracepoint class provider name */
my_provider,
/* Tracepoint class name */
my_tracepoint_class,
/* List of tracepoint arguments (input) */
LTTNG_UST_TP_ARGS(
...
),
/* List of fields of eventual event (output) */
LTTNG_UST_TP_FIELDS(
...
)
)
Once the tracepoint class is defined, you can create as many
tracepoint instances as needed:
#define LTTNG_UST_TRACEPOINT_PROVIDER natality
/* ... */
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE(
/* Name of the tracepoint class provider */
my_provider,
/* Tracepoint class name */
my_tracepoint_class,
/* Name of the local (instance) tracepoint provider */
natality,
/* Tracepoint/event name */
my_tracepoint,
/* List of tracepoint arguments (input) */
LTTNG_UST_TP_ARGS(
...
)
)
As you can see, the LTTNG_UST_TRACEPOINT_EVENT_INSTANCE() does not
contain the LTTNG_UST_TP_FIELDS() macro, because they are defined
at the LTTNG_UST_TRACEPOINT_EVENT_CLASS() level.
Note that the LTTNG_UST_TRACEPOINT_EVENT_INSTANCE() macro requires
two provider names:
• The name of the tracepoint class provider (my_provider in the
example above).
This is the same as the first argument of the
LTTNG_UST_TRACEPOINT_EVENT_CLASS() expansion to refer to.
• The name of the local, or instance, provider (natality in the
example above).
This is the provider name which becomes the prefix part of the
name of the events which such a tracepoint creates.
The two provider names may be different if the tracepoint class
and the tracepoint instance macros are in two different
translation units.
See the EXAMPLE section below for a complete example.
LTTNG_UST_TRACEPOINT_LOGLEVEL() usage
Optionally, a log level can be assigned to a defined tracepoint.
Assigning different levels of severity to tracepoints can be
useful: when controlling tracing sessions, you can choose to only
enable events falling into a specific log level range using the
--loglevel and --loglevel-only options of the
lttng-enable-event(1) command.
Log levels are assigned to tracepoints that are already defined
using the LTTNG_UST_TRACEPOINT_LOGLEVEL() macro. The latter must
be used after having used LTTNG_UST_TRACEPOINT_EVENT() or
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE() for a given tracepoint. The
LTTNG_UST_TRACEPOINT_LOGLEVEL() macro is used as follows:
LTTNG_UST_TRACEPOINT_LOGLEVEL(
/* Tracepoint provider name */
my_provider,
/* Tracepoint/event name */
my_tracepoint,
/* Log level */
LTTNG_UST_TRACEPOINT_LOGLEVEL_INFO
)
The available log level definitions are:
LTTNG_UST_TRACEPOINT_LOGLEVEL_EMERG
System is unusable.
LTTNG_UST_TRACEPOINT_LOGLEVEL_ALERT
Action must be taken immediately.
LTTNG_UST_TRACEPOINT_LOGLEVEL_CRIT
Critical conditions.
LTTNG_UST_TRACEPOINT_LOGLEVEL_ERR
Error conditions.
LTTNG_UST_TRACEPOINT_LOGLEVEL_WARNING
Warning conditions.
LTTNG_UST_TRACEPOINT_LOGLEVEL_NOTICE
Normal, but significant, condition.
LTTNG_UST_TRACEPOINT_LOGLEVEL_INFO
Informational message.
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_SYSTEM
Debug information with system-level scope (set of programs).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_PROGRAM
Debug information with program-level scope (set of processes).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_PROCESS
Debug information with process-level scope (set of modules).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_MODULE
Debug information with module (executable/library) scope (set
of units).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_UNIT
Debug information with compilation unit scope (set of
functions).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_FUNCTION
Debug information with function-level scope.
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG_LINE
Debug information with line-level scope (default log level).
LTTNG_UST_TRACEPOINT_LOGLEVEL_DEBUG
Debug-level message.
See the EXAMPLE section below for a complete example.
Instrumenting your application
Once the tracepoint provider is created (see the Creating a
tracepoint provider section above), you can instrument your
application with the defined tracepoints thanks to the
lttng_ust_tracepoint() macro:
#define lttng_ust_tracepoint(prov_name, t_name, ...)
With:
prov_name
Tracepoint provider name.
t_name
Tracepoint/event name.
...
Tracepoint arguments, if any.
Make sure to include the tracepoint provider header file anywhere
you use lttng_ust_tracepoint() for this provider.
Note
Even though LTTng-UST supports lttng_ust_tracepoint() call
site duplicates having the same provider and tracepoint names,
it is recommended to use a provider/tracepoint name pair only
once within the application source code to help map events
back to their call sites when analyzing the trace.
Sometimes, arguments to the tracepoint are expensive to compute
(take call stack, for example). To avoid the computation when the
tracepoint is disabled, you can use the
lttng_ust_tracepoint_enabled() and lttng_ust_do_tracepoint()
macros:
#define lttng_ust_tracepoint_enabled(prov_name, t_name)
#define lttng_ust_do_tracepoint(prov_name, t_name, ...)
lttng_ust_tracepoint_enabled() returns a non-zero value if the
tracepoint named t_name from the provider named prov_name is
enabled at run time.
lttng_ust_do_tracepoint() is like lttng_ust_tracepoint(), except
that it doesn’t check if the tracepoint is enabled. Using
lttng_ust_tracepoint() with lttng_ust_tracepoint_enabled() is
dangerous since lttng_ust_tracepoint() also contains the
lttng_ust_tracepoint_enabled() check, thus a race condition is
possible in this situation:
if (lttng_ust_tracepoint_enabled(my_provider, my_tracepoint)) {
stuff = prepare_stuff();
}
lttng_ust_tracepoint(my_provider, my_tracepoint, stuff);
If the tracepoint is enabled after the condition, then stuff is
not prepared: the emitted event will either contain wrong data, or
the whole application could crash (segmentation fault, for
example).
Note
Neither lttng_ust_tracepoint_enabled() nor
lttng_ust_do_tracepoint() have a STAP_PROBEV() call, so if you
need it, you should emit this call yourself.
Tracing C/C++ constructors and destructors
If one of the following is true:
• You compile your C++ application with GCC ≤ 4.8.
• You compile your C/C++ application with a C++ compiler and
define LTTNG_UST_ALLOCATE_COMPOUND_LITERAL_ON_HEAP.
Then LTTng won’t trace:
• C constructors and destructors in the application itself or in
statically linked archives.
• Some C++ constructors and destructors in the application
itself or in statically linked archives.
In this case, which exact C++ constructors and destructors
won’t be traced depends on the initialization order within
each translation unit and across the entire program when all
translation units are linked together.
Statically linking the tracepoint provider
With the static linking method, compiled tracepoint providers are
copied into the target application.
Define LTTNG_UST_TRACEPOINT_DEFINE definition below the
LTTNG_UST_TRACEPOINT_CREATE_PROBES definition in the tracepoint
provider source:
#define LTTNG_UST_TRACEPOINT_CREATE_PROBES
#define LTTNG_UST_TRACEPOINT_DEFINE
#include "tp.h"
Create the tracepoint provider object file:
$ cc -c -I. tp.c
Note
Although an application instrumented with LTTng-UST
tracepoints can be compiled with a C++ compiler, tracepoint
probes should be compiled with a C compiler.
At this point, you can archive this tracepoint provider object
file, possibly with other object files of your application or with
other tracepoint provider object files, as a static library:
$ ar rc tp.a tp.o
Using a static library does have the advantage of centralising the
tracepoint providers objects so they can be shared between
multiple applications. This way, when the tracepoint provider is
modified, the source code changes don’t have to be patched into
the source code tree of each application. The applications need to
be relinked after each change, but need not to be otherwise
recompiled (unless the API of the tracepoint provider changes).
Then, link your application with this object file (or with the
static library containing it) and with liblttng-ust and libdl
(libc on a BSD system):
$ cc -o app tp.o app.o -llttng-ust -ldl
Dynamically loading the tracepoint provider
The second approach to package the tracepoint provider is to use
the dynamic loader: the library and its member functions are
explicitly sought, loaded at run time.
In this scenario, the tracepoint provider is compiled as a shared
object.
The process to create the tracepoint provider shared object is
pretty much the same as the static linking method, except that:
• Since the tracepoint provider is not part of the application,
LTTNG_UST_TRACEPOINT_DEFINE must be defined, for each
tracepoint provider, in exactly one source file of the
application
• LTTNG_UST_TRACEPOINT_PROBE_DYNAMIC_LINKAGE must be defined
next to LTTNG_UST_TRACEPOINT_DEFINE
Regarding LTTNG_UST_TRACEPOINT_DEFINE and
LTTNG_UST_TRACEPOINT_PROBE_DYNAMIC_LINKAGE, the recommended
practice is to use a separate C source file in your application to
define them, then include the tracepoint provider header files
afterwards. For example, as tp-define.c:
#define LTTNG_UST_TRACEPOINT_DEFINE
#define LTTNG_UST_TRACEPOINT_PROBE_DYNAMIC_LINKAGE
#include "tp.h"
The tracepoint provider object file used to create the shared
library is built like it is using the static linking method, but
with the -fpic option:
$ cc -c -fpic -I. tp.c
It is then linked as a shared library like this:
$ cc -shared -Wl,--no-as-needed -o tp.so tp.o -llttng-ust
This tracepoint provider shared object isn’t linked with the user
application: it must be loaded manually. This is why the
application is built with no mention of this tracepoint provider,
but still needs libdl:
$ cc -o app app.o tp-define.o -ldl
There are two ways to dynamically load the tracepoint provider
shared object:
• Load it manually from the application using dlopen(3)
• Make the dynamic loader load it with the LD_PRELOAD
environment variable (see ld.so(8))
If the application does not dynamically load the tracepoint
provider shared object using one of the methods above, tracing is
disabled for this application, and the events are not listed in
the output of lttng-list(1).
Note that it is not safe to use dlclose(3) on a tracepoint
provider shared object that is being actively used for tracing,
due to a lack of reference counting from LTTng-UST to the shared
object.
For example, statically linking a tracepoint provider to a shared
object which is to be dynamically loaded by an application (a
plugin, for example) is not safe: the shared object, which
contains the tracepoint provider, could be dynamically closed (‐
dlclose(3)) at any time by the application.
To instrument a shared object, either:
• Statically link the tracepoint provider to the application, or
• Build the tracepoint provider as a shared object (following
the procedure shown in this section), and preload it when
tracing is needed using the LD_PRELOAD environment variable.
Using LTTng-UST with daemons
Some extra care is needed when using liblttng-ust with daemon
applications that call fork(2), clone(2), or BSD’s rfork(2)
without a following exec(3) family system call. The library
liblttng-ust-fork.so needs to be preloaded before starting the
application with the LD_PRELOAD environment variable (see
ld.so(8)).
To use liblttng-ust with a daemon application which closes file
descriptors that were not opened by it, preload the liblttng-ust-
fd.so library before you start the application. Typical use cases
include daemons closing all file descriptors after fork(2), and
buggy applications doing “double-closes”.
Context information
Context information can be prepended by the LTTng-UST tracer
before each event, or before specific events.
Context fields can be added to specific channels using
lttng-add-context(1).
The following context fields are supported by LTTng-UST:
General context fields
cpu_id
CPU ID.
Note
With the default per-CPU buffer allocation policy (see
lttng-enable-channel(1)), this context field is always
enabled, and it cannot be added with
lttng-add-context(1): its main purpose is to be used
for dynamic event filtering. See lttng-enable-event(1)
for more information about event filtering.
ip
Instruction pointer: enables recording the exact address
from which an event was emitted. This context field can be
used to reverse-lookup the source location that caused the
event to be emitted.
pthread_id
POSIX thread identifier.
Can be used on architectures where pthread_t maps nicely
to an unsigned long type.
Process context fields
procname
Thread name, as set by exec(3) or prctl(2). It is
recommended that programs set their thread name with
prctl(2) before hitting the first tracepoint for that
thread.
vpid
Virtual process ID: process ID as seen from the point of
view of the current process ID namespace (see
pid_namespaces(7)).
vtid
Virtual thread ID: thread ID as seen from the point of
view of the current process ID namespace (see
pid_namespaces(7)).
perf context fields
perf:thread:COUNTER
perf counter named COUNTER. Use lttng add-context --list
to list the available perf counters.
Only available on IA-32 and x86-64 architectures.
perf:thread:raw:rN:NAME
perf counter with raw ID N and custom name NAME. See
lttng-add-context(1) for more details.
Namespace context fields (see namespaces(7))
cgroup_ns
Inode number of the current control group namespace (see
cgroup_namespaces(7)) in the proc file system.
ipc_ns
Inode number of the current IPC namespace (see
ipc_namespaces(7)) in the proc file system.
mnt_ns
Inode number of the current mount point namespace (see
mount_namespaces(7)) in the proc file system.
net_ns
Inode number of the current network namespace (see
network_namespaces(7)) in the proc file system.
pid_ns
Inode number of the current process ID namespace (see
pid_namespaces(7)) in the proc file system.
time_ns
Inode number of the current clock namespace (see
time_namespaces(7)) in the proc file system.
user_ns
Inode number of the current user namespace (see
user_namespaces(7)) in the proc file system.
uts_ns
Inode number of the current UTS namespace (see
uts_namespaces(7)) in the proc file system.
Credential context fields (see credentials(7))
vuid
Virtual real user ID: real user ID as seen from the point
of view of the current user namespace (see
user_namespaces(7)).
vgid
Virtual real group ID: real group ID as seen from the
point of view of the current user namespace (see
user_namespaces(7)).
veuid
Virtual effective user ID: effective user ID as seen from
the point of view of the current user namespace (see
user_namespaces(7)).
vegid
Virtual effective group ID: effective group ID as seen
from the point of view of the current user namespace (see
user_namespaces(7)).
vsuid
Virtual saved set-user ID: saved set-user ID as seen from
the point of view of the current user namespace (see
user_namespaces(7)).
vsgid
Virtual saved set-group ID: saved set-group ID as seen
from the point of view of the current user namespace (see
user_namespaces(7)).
LTTng-UST state dump
If an application that uses liblttng-ust becomes part of a tracing
session, information about its currently loaded shared objects,
their build IDs, and their debug link information are emitted as
events by the tracer.
The following LTTng-UST state dump events exist and must be
enabled to record application state dumps. Note that, during the
state dump phase, LTTng-UST can also emit shared library
load/unload events (see Shared library load/unload tracking
below).
lttng_ust_statedump:start
Emitted when the state dump begins.
This event has no fields.
lttng_ust_statedump:end
Emitted when the state dump ends. Once this event is emitted,
it is guaranteed that, for a given process, the state dump is
complete.
This event has no fields.
lttng_ust_statedump:bin_info
Emitted when information about a currently loaded executable
or shared object is found.
Fields:
┌────────────────┬────────────────────────────────┐
│ Field name │ Description │
├────────────────┼────────────────────────────────┤
│ baddr │ Base address of loaded │
│ │ executable. │
├────────────────┼────────────────────────────────┤
│ memsz │ Size of loaded │
│ │ executable in memory. │
├────────────────┼────────────────────────────────┤
│ path │ Path to loaded │
│ │ executable file. │
├────────────────┼────────────────────────────────┤
│ is_pic │ Whether or not the │
│ │ executable is │
│ │ position-independent │
│ │ code. │
├────────────────┼────────────────────────────────┤
│ has_build_id │ Whether or not the │
│ │ executable has a build │
│ │ ID. If this field is 1, │
│ │ you can expect that an │
│ │ lttng_ust_statedump:build_id │
│ │ event record follows │
│ │ this one (not │
│ │ necessarily immediately │
│ │ after). │
├────────────────┼────────────────────────────────┤
│ has_debug_link │ Whether or not the │
│ │ executable has debug link │
│ │ information. If this field │
│ │ is 1, you can expect that an │
│ │ lttng_ust_statedump:debug_link │
│ │ event record follows this │
│ │ one (not necessarily │
│ │ immediately after). │
└────────────────┴────────────────────────────────┘
lttng_ust_statedump:build_id
Emitted when a build ID is found in a currently loaded shared
library. See Debugging Information in Separate Files
<https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-
Files.html> for more information about build IDs.
Fields:
┌────────────┬────────────────────────┐
│ Field name │ Description │
├────────────┼────────────────────────┤
│ baddr │ Base address of loaded │
│ │ library. │
├────────────┼────────────────────────┤
│ build_id │ Build ID. │
└────────────┴────────────────────────┘
lttng_ust_statedump:debug_link
Emitted when debug link information is found in a currently
loaded shared library. See Debugging Information in Separate
Files <https://sourceware.org/gdb/onlinedocs/gdb/Separate-
Debug-Files.html> for more information about debug links.
Fields:
┌────────────┬─────────────────────────┐
│ Field name │ Description │
├────────────┼─────────────────────────┤
│ baddr │ Base address of loaded │
│ │ library. │
├────────────┼─────────────────────────┤
│ crc │ CRC of debug link file. │
├────────────┼─────────────────────────┤
│ filename │ Debug link file name. │
└────────────┴─────────────────────────┘
lttng_ust_statedump:procname
The process procname at process start.
Fields:
┌────────────┬───────────────────┐
│ Field name │ Description │
├────────────┼───────────────────┤
│ procname │ The process name. │
└────────────┴───────────────────┘
Shared library load/unload tracking
The LTTng-UST state dump and the LTTng-UST helper library to
instrument the dynamic linker (see liblttng-ust-dl(3)) can emit
shared library load/unload tracking events.
The following shared library load/unload tracking events exist and
must be enabled to track the loading and unloading of shared
libraries:
lttng_ust_lib:load
Emitted when a shared library (shared object) is loaded.
Fields:
┌────────────────┬──────────────────────────┐
│ Field name │ Description │
├────────────────┼──────────────────────────┤
│ baddr │ Base address of loaded │
│ │ library. │
├────────────────┼──────────────────────────┤
│ memsz │ Size of loaded library │
│ │ in memory. │
├────────────────┼──────────────────────────┤
│ path │ Path to loaded library │
│ │ file. │
├────────────────┼──────────────────────────┤
│ has_build_id │ Whether or not the │
│ │ library has a build ID. │
│ │ If this field is 1, you │
│ │ can expect that an │
│ │ lttng_ust_lib:build_id │
│ │ event record follows │
│ │ this one (not │
│ │ necessarily immediately │
│ │ after). │
├────────────────┼──────────────────────────┤
│ has_debug_link │ Whether or not the │
│ │ library has debug link │
│ │ information. If this │
│ │ field is 1, you can │
│ │ expect that an │
│ │ lttng_ust_lib:debug_link │
│ │ event record follows │
│ │ this one (not │
│ │ necessarily immediately │
│ │ after). │
└────────────────┴──────────────────────────┘
lttng_ust_lib:unload
Emitted when a shared library (shared object) is unloaded.
Fields:
┌────────────┬──────────────────────────┐
│ Field name │ Description │
├────────────┼──────────────────────────┤
│ baddr │ Base address of unloaded │
│ │ library. │
└────────────┴──────────────────────────┘
lttng_ust_lib:build_id
Emitted when a build ID is found in a loaded shared library
(shared object). See Debugging Information in Separate Files
<https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-
Files.html> for more information about build IDs.
Fields:
┌────────────┬────────────────────────┐
│ Field name │ Description │
├────────────┼────────────────────────┤
│ baddr │ Base address of loaded │
│ │ library. │
├────────────┼────────────────────────┤
│ build_id │ Build ID. │
└────────────┴────────────────────────┘
lttng_ust_lib:debug_link
Emitted when debug link information is found in a loaded
shared library (shared object). See Debugging Information in
Separate Files
<https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-
Files.html> for more information about debug links.
Fields:
┌────────────┬─────────────────────────┐
│ Field name │ Description │
├────────────┼─────────────────────────┤
│ baddr │ Base address of loaded │
│ │ library. │
├────────────┼─────────────────────────┤
│ crc │ CRC of debug link file. │
├────────────┼─────────────────────────┤
│ filename │ Debug link file name. │
└────────────┴─────────────────────────┘
Detect if LTTng-UST is loaded
To detect if liblttng-ust is loaded from an application:
1. Define the lttng_ust_loaded weak symbol globally:
int lttng_ust_loaded __attribute__((weak));
This weak symbol is set by the constructor of liblttng-ust.
2. Test lttng_ust_loaded where needed:
/* ... */
if (lttng_ust_loaded) {
/* LTTng-UST is loaded */
} else {
/* LTTng-UST is NOT loaded */
}
/* ... */
Note
A few examples are available in the doc/examples
<https://github.com/lttng/lttng-
ust/tree/stable-2.15/doc/examples> directory of LTTng-UST’s
source tree.
This example shows all the features documented in the previous
sections. The static linking method is chosen here to link the
application with the tracepoint provider.
You can compile the source files and link them together statically
like this:
$ cc -c -I. tp.c
$ cc -c app.c
$ cc -o app tp.o app.o -llttng-ust -ldl
Using the lttng(1) tool, create an LTTng tracing session, enable
all the events of this tracepoint provider, and start tracing:
$ lttng create my-session
$ lttng enable-event --userspace 'my_provider:*'
$ lttng start
You may also enable specific events:
$ lttng enable-event --userspace my_provider:big_event
$ lttng enable-event --userspace my_provider:event_instance2
Run the application:
$ ./app some arguments
Stop the current tracing session and inspect the recorded events:
$ lttng stop
$ lttng view
Tracepoint provider header file
tp.h:
#undef LTTNG_UST_TRACEPOINT_PROVIDER
#define LTTNG_UST_TRACEPOINT_PROVIDER my_provider
#undef LTTNG_USTTRACEPOINT_INCLUDE
#define LTTNG_USTTRACEPOINT_INCLUDE "./tp.h"
#if !defined(_TP_H) || \
defined(LTTNG_UST_TRACEPOINT_HEADER_MULTI_READ)
#define _TP_H
#include <lttng/tracepoint.h>
#include <stdio.h>
#include "app.h"
LTTNG_UST_TRACEPOINT_EVENT(
my_provider,
simple_event,
LTTNG_UST_TP_ARGS(
int, my_integer_arg,
const char *, my_string_arg
),
LTTNG_UST_TP_FIELDS(
lttng_ust_field_string(argc, my_string_arg)
lttng_ust_field_integer(int, argv, my_integer_arg)
)
)
LTTNG_UST_TRACEPOINT_ENUM(
my_provider,
my_enum,
LTTNG_UST_TP_ENUM_VALUES(
lttng_ust_field_enum_value("ZERO", 0)
lttng_ust_field_enum_value("ONE", 1)
lttng_ust_field_enum_value("TWO", 2)
lttng_ust_field_enum_range("A RANGE", 52, 125)
lttng_ust_field_enum_value("ONE THOUSAND", 1000)
)
)
LTTNG_UST_TRACEPOINT_EVENT(
my_provider,
big_event,
LTTNG_UST_TP_ARGS(
int, my_integer_arg,
const char *, my_string_arg,
FILE *, stream,
double, flt_arg,
int *, array_arg
),
LTTNG_UST_TP_FIELDS(
lttng_ust_field_integer(int, int_field1, my_integer_arg * 2)
lttng_ust_field_integer_hex(long int, stream_pos,
ftell(stream))
lttng_ust_field_float(double, float_field, flt_arg)
lttng_ust_field_string(string_field, my_string_arg)
lttng_ust_field_array(int, array_field, array_arg, 7)
lttng_ust_field_array_text(char, array_text_field,
array_arg, 5)
lttng_ust_field_sequence(int, seq_field, array_arg, unsigned int,
my_integer_arg / 10)
lttng_ust_field_sequence_text(char, seq_text_field,
array_arg, unsigned int,
my_integer_arg / 5)
lttng_ust_field_enum(my_provider, my_enum, int,
enum_field, array_arg[1])
)
)
LTTNG_UST_TRACEPOINT_LOGLEVEL(my_provider, big_event,
LTTNG_UST_TRACEPOINT_LOGLEVEL_WARNING)
LTTNG_UST_TRACEPOINT_EVENT_CLASS(
my_provider,
my_tracepoint_class,
LTTNG_UST_TP_ARGS(
int, my_integer_arg,
struct app_struct *, app_struct_arg
),
LTTNG_UST_TP_FIELDS(
lttng_ust_field_integer(int, a, my_integer_arg)
lttng_ust_field_integer(unsigned long, b, app_struct_arg->b)
lttng_ust_field_string(c, app_struct_arg->c)
)
)
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE(
my_provider,
my_tracepoint_class,
my_provider,
event_instance1,
LTTNG_UST_TP_ARGS(
int, my_integer_arg,
struct app_struct *, app_struct_arg
)
)
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE(
my_provider,
my_tracepoint_class,
my_provider,
event_instance2,
LTTNG_UST_TP_ARGS(
int, my_integer_arg,
struct app_struct *, app_struct_arg
)
)
LTTNG_UST_TRACEPOINT_LOGLEVEL(my_provider, event_instance2,
LTTNG_UST_TRACEPOINT_LOGLEVEL_INFO)
LTTNG_UST_TRACEPOINT_EVENT_INSTANCE(
my_provider,
my_tracepoint_class,
my_provider,
event_instance3,
LTTNG_UST_TP_ARGS(
int, my_integer_arg,
struct app_struct *, app_struct_arg
)
)
#endif /* _TP_H */
#include <lttng/tracepoint-event.h>
Tracepoint provider source file
tp.c:
#define LTTNG_UST_TRACEPOINT_CREATE_PROBES
#define LTTNG_UST_TRACEPOINT_DEFINE
#include "tp.h"
Application header file
app.h:
#ifndef _APP_H
#define _APP_H
struct app_struct {
unsigned long b;
const char *c;
double d;
};
#endif /* _APP_H */
Application source file
app.c:
#include <stdlib.h>
#include <stdio.h>
#include "tp.h"
#include "app.h"
static int array_of_ints[] = {
100, -35, 1, 23, 14, -6, 28, 1001, -3000,
};
int main(int argc, char* argv[])
{
FILE *stream;
struct app_struct app_struct;
lttng_ust_tracepoint(my_provider, simple_event, argc, argv[0]);
stream = fopen("/tmp/app.txt", "w");
if (!stream) {
fprintf(stderr,
"Error: Cannot open /tmp/app.txt for writing\n");
return EXIT_FAILURE;
}
if (fprintf(stream, "0123456789") != 10) {
fclose(stream);
fprintf(stderr, "Error: Cannot write to /tmp/app.txt\n");
return EXIT_FAILURE;
}
lttng_ust_tracepoint(my_provider, big_event, 35,
"hello tracepoint", stream, -3.14,
array_of_ints);
fclose(stream);
app_struct.b = argc;
app_struct.c = "[the string]";
lttng_ust_tracepoint(my_provider, event_instance1, 23,
&app_struct);
app_struct.b = argc * 5;
app_struct.c = "[other string]";
lttng_ust_tracepoint(my_provider, event_instance2, 17,
&app_struct);
app_struct.b = 23;
app_struct.c = "nothing";
lttng_ust_tracepoint(my_provider, event_instance3, -52,
&app_struct);
return EXIT_SUCCESS;
}
LTTNG_HOME
Alternative user’s home directory. This variable is useful
when the user running the instrumented application has a
non-writable home directory. This path is where Unix sockets
for communication with the per-user session daemon are
located.
LTTNG_UST_ABORT_ON_CRITICAL
If set, abort the instrumented application on a critical error
message.
LTTNG_UST_ALLOW_BLOCKING
If set, allow the application to retry event tracing when
there’s no space left for the event record in the sub-buffer,
therefore effectively blocking the application until space is
made available or the configured timeout is reached.
To allow an application to block during tracing, you also need
to specify a blocking timeout when you create a channel with
the --blocking-timeout option of the lttng-enable-channel(1)
command.
This option can be useful in workloads generating very large
trace data throughput, where blocking the application is an
acceptable trade-off to prevent discarding event records.
Warning
Setting this environment variable may significantly affect
application timings.
LTTNG_UST_APP_PATH
Path of the directory where to expect the LTTng session daemon
to place the following files to receive instrumented
application connection requests:
• The application registration Unix socket.
• The "wait" shared memory files to wake up instrumented
applications that are waiting for a session daemon to
start.
• The agent port file.
This file contains the TCP port the agents must connect to
in order to enable LTTng tracing.
This directory must exist when you start the application for
LTTng tracing to be enabled.
When LTTNG_UST_APP_PATH is set, liblttng-ust:
• Only considers this path to connect to a session daemon.
• Won’t connect to root and/or user session daemons as
usual.
See the corresponding LTTNG_UST_CTL_PATH environment variable
of lttng-sessiond(8).
LTTNG_UST_CLOCK_PLUGIN
Path to the shared object which acts as the clock override
plugin. An example of such a plugin can be found in the
LTTng-UST documentation under examples/clock-override
<https://github.com/lttng/lttng-
ust/tree/stable-2.15/doc/examples/clock-override>.
LTTNG_UST_DEBUG
If set, enable the debug and error output of liblttng-ust.
LTTNG_UST_GETCPU_PLUGIN
Path to the shared object which acts as the getcpu() override
plugin. An example of such a plugin can be found in the
LTTng-UST documentation under examples/getcpu-override
<https://github.com/lttng/lttng-
ust/tree/stable-2.15/doc/examples/getcpu-override>.
LTTNG_UST_MAP_POPULATE_POLICY
If set, override the policy used to populate shared memory
pages within the application.
The possible values are:
none (default)
Do not pre-populate any page: take minor faults on first
access while tracing.
cpu_possible
Pre-populate pages for all possible CPUs in the system, as
shown in /sys/devices/system/cpu/possible.
LTTNG_UST_REGISTER_TIMEOUT
Waiting time for the registration done session daemon command
before proceeding to execute the main program (milliseconds).
The value 0 means do not wait. The value -1 means wait
forever. Setting this environment variable to 0 is recommended
for applications with time constraints on the process startup
time.
Default: 3000.
LTTNG_UST_WITHOUT_BADDR_STATEDUMP
If set, prevents liblttng-ust from performing a base address
state dump (see the LTTng-UST state dump section above).
LTTNG_UST_WITHOUT_PROCNAME_STATEDUMP
If set, prevents liblttng-ust from performing a procname state
dump (see the LTTng-UST state dump section above).
If you encounter any issue or usability problem, please report it
on the LTTng bug tracker <https://bugs.lttng.org/projects/lttng-
ust>.
• LTTng project website <http://lttng.org>
• LTTng documentation <http://lttng.org/docs>
• Git repositories <http://git.lttng.org>
• GitHub organization <http://github.com/lttng>
• Continuous integration <http://ci.lttng.org/>
• Mailing list <http://lists.lttng.org> for support and
development: lttng-dev@lists.lttng.org
• IRC channel <irc://irc.oftc.net/lttng>: #lttng on irc.oftc.net
This library is part of the LTTng-UST project.
This library is distributed under the GNU Lesser General Public
License, version 2.1 <http://www.gnu.org/licenses/old-
licenses/lgpl-2.1.en.html>. See the COPYING
<https://github.com/lttng/lttng-ust/blob/v2.15/COPYING> file for
more details.
Thanks to Ericsson for funding this work, providing real-life use
cases, and testing.
Special thanks to Michel Dagenais and the DORSAL laboratory
<http://www.dorsal.polymtl.ca/> at École Polytechnique de Montréal
for the LTTng journey.
LTTng-UST was originally written by Mathieu Desnoyers, with
additional contributions from various other people. It is
currently maintained by Mathieu Desnoyers
<mailto:mathieu.desnoyers@efficios.com>.
lttng_ust_tracef(3), lttng_ust_tracelog(3), lttng-gen-tp(1),
lttng-ust-dl(3), lttng-ust-cyg-profile(3), lttng(1),
lttng-enable-event(1), lttng-list(1), lttng-add-context(1),
babeltrace(1), dlopen(3), ld.so(8)
This page is part of the LTTng-UST (LTTng Userspace Tracer)
project. Information about the project can be found at
⟨http://lttng.org/⟩. It is not known how to report bugs for this
man page; if you know, please send a mail to man-pages@man7.org.
This page was obtained from the tarball fetched from
⟨https://lttng.org/files/lttng-ust/⟩ on 2025-08-11. If you
discover any rendering problems in this HTML version of the page,
or you believe there is a better or more up-to-date source for the
page, or you have corrections or improvements to the information
in this COLOPHON (which is not part of the original manual page),
send a mail to man-pages@man7.org
LTTng 2.15.0-pre 08/10/2025 LTTNG-UST(3)
Pages that refer to this page: lttng(1), lttng-crash(1), lttng-enable-channel(1), lttng-gen-tp(1), lttng-health-check(3), lttng-ust-cyg-profile(3), lttng-ust-dl(3), lttng_ust_tracef(3), lttng_ust_tracelog(3), tracef(3), tracelog(3), babeltrace2-filter.lttng-utils.debug-info(7), lttng-relayd(8), lttng-sessiond(8)