|
NAME | SYNOPSIS | DESCRIPTION | OPTIONS | LIST OF AVAILABLE METHODS | NOTES | SEE ALSO | COLOPHON |
|
|
|
TRACEROUTE(8) Traceroute For Linux TRACEROUTE(8)
traceroute - print the route packets trace to network host
traceroute [-46dFITUnreAV] [-f first_ttl] [-g gate,...]
[-i device] [-m max_ttl] [-p port] [-s src_addr]
[-q nqueries] [-N squeries] [-t tos]
[-l flow_label] [-w waittimes] [-z sendwait] [-UL] [-D]
[-P proto] [--sport=port] [-M method] [-O mod_options]
[--mtu] [--back]
host [packet_len]
traceroute6 [options]
traceroute tracks the route packets taken from an IP network on
their way to a given host. It utilizes the IP protocol's time to
live (TTL) field and attempts to elicit an ICMP TIME_EXCEEDED
response from each gateway along the path to the host.
traceroute6 is equivalent to traceroute -6
The only required parameter is the name or IP address of the
destination host . The optional packet_len`gth is the total size
of the probing packet (default 60 bytes for IPv4 and 80 for IPv6).
The specified size can be ignored in some situations or increased
up to a minimal value.
This program attempts to trace the route an IP packet would follow
to some internet host by launching probe packets with a small ttl
(time to live) then listening for an ICMP "time exceeded" reply
from a gateway. We start our probes with a ttl of one and
increase by one until we get an ICMP "port unreachable" (or TCP
reset), which means we got to the "host", or hit a max (which
defaults to 30 hops). Three probes (by default) are sent at each
ttl setting and a line is printed showing the ttl, address of the
gateway and round trip time of each probe. The address can be
followed by additional information when requested. If the probe
answers come from different gateways, the address of each
responding system will be printed. If there is no response within
a certain timeout, an "*" (asterisk) is printed for that probe.
After the trip time, some additional annotation can be printed:
!H, !N, or !P (host, network or protocol unreachable), !S (source
route failed), !F (fragmentation needed), !X (communication
administratively prohibited), !V (host precedence violation), !C
(precedence cutoff in effect), or !<num> (ICMP unreachable code
<num>). If almost all the probes result in some kind of
unreachable, traceroute will give up and exit.
We don't want the destination host to process the UDP probe
packets, so the destination port is set to an unlikely value (you
can change it with the -p flag). There is no such a problem for
ICMP or TCP tracerouting (for TCP we use half-open technique,
which prevents our probes to be seen by applications on the
destination host).
In the modern network environment the traditional traceroute
methods can not be always applicable, because of widespread use of
firewalls. Such firewalls filter the "unlikely" UDP ports, or
even ICMP echoes. To solve this, some additional tracerouting
methods are implemented (including tcp), see LIST OF AVAILABLE
METHODS below. Such methods try to use particular protocol and
source/destination port, in order to bypass firewalls (to be seen
by firewalls just as a start of allowed type of a network
session).
--help Print help info and exit.
-4, -6 Explicitly force IPv4 or IPv6 tracerouting. By default, the
program will try to resolve the name given, and choose the
appropriate protocol automatically. If resolving a host
name returns both IPv4 and IPv6 addresses, traceroute will
use IPv4.
-I, --icmp
Use ICMP ECHO for probes
-T, --tcp
Use TCP SYN for probes
-d, --debug
Enable socket level debugging (when the Linux kernel
supports it)
-F, --dont-fragment
Do not fragment probe packets. (For IPv4 it also sets DF
bit, which tells intermediate routers not to fragment
remotely as well).
Varying the size of the probing packet by the packet_len
command line parameter, you can manually obtain information
about the MTU of individual network hops. The --mtu option
(see below) tries to do this automatically.
Note, that non-fragmented features (like -F or --mtu) work
properly since the Linux kernel 2.6.22 only. Before that
version, IPv6 was always fragmented, IPv4 could use the
once the discovered final mtu only (from the route cache),
which can be less than the actual mtu of a device.
-f first_ttl, --first=first_ttl
Specifies with what TTL to start. Defaults to 1.
-g gateway, --gateway=gateway
Tells traceroute to add an IP source routing option to the
outgoing packet that tells the network to route the packet
through the specified gateway (most routers have disabled
source routing for security reasons). In general, several
gateway's is allowed (comma separated). For IPv6, the form
of num,addr,addr... is allowed, where num is a route
header type (default is type 2). Note the type 0 route
header is now deprecated (rfc5095).
-i interface, --interface=interface
Specifies the interface through which traceroute should
send packets. By default, the interface is selected
according to the routing table.
-m max_ttl, --max-hops=max_ttl
Specifies the maximum number of hops (max time-to-live
value) traceroute will probe. The default is 30.
-N squeries, --sim-queries=squeries
Specifies the number of probe packets sent out
simultaneously. Sending several probes concurrently can
speed up traceroute considerably. The default value is 16.
Note that some routers and hosts can use ICMP rate
throttling. In such a situation specifying too large number
can lead to loss of some responses.
-n Do not try to map IP addresses to host names when
displaying them.
-p port, --port=port
For UDP tracing, specifies the destination port base
traceroute will use (the destination port number will be
incremented by each probe).
For ICMP tracing, specifies the initial ICMP sequence value
(incremented by each probe too).
For TCP and others specifies just the (constant)
destination port to connect.
-t tos, --tos=tos
For IPv4, set the Type of Service (TOS) and Precedence
value. Useful values are 16 (low delay) and 8 (high
throughput). Note that in order to use some TOS precedence
values, you have to be super user.
For IPv6, set the Traffic Control value.
-l flow_label, --flowlabel=flow_label
Use specified flow_label for IPv6 packets.
-w max[,here,near], --wait=max[,here,near]
Determines how long to wait for a response to a probe.
There are three (in general) float values separated by a
comma (or a slash). Max specifies the maximum time (in
seconds, default 5.0) to wait, in any case.
Traditional traceroute implementation always waited whole
max seconds for any probe. But if we already have some
replies from the same hop, or even from some next hop, we
can use the round trip time of such a reply as a hint to
determine the actual reasonable amount of time to wait.
The optional here (default 3.0) specifies a factor to
multiply the round trip time of an already received
response from the same hop. The resulting value is used as
a timeout for the probe, instead of (but no more than) max.
The optional near (default 10.0) specifies a similar factor
for a response from some next hop. (The time of the first
found result is used in both cases).
First, we look for the same hop (of the probe which will be
printed first from now). If nothing found, then look for
some next hop. If nothing found, use max. If here and/or
near have zero values, the corresponding computation is
skipped.
Here and near are always set to zero if only max is
specified (for compatibility with previous versions).
-q nqueries, --queries=nqueries
Sets the number of probe packets per hop. The default is 3.
-r Bypass the normal routing tables and send directly to a
host on an attached network. If the host is not on a
directly-attached network, an error is returned. This
option can be used to ping a local host through an
interface that has no route through it.
-s source_addr, --source=source_addr
Chooses an alternative source address. Note that you must
select the address of one of the interfaces. By default,
the address of the outgoing interface is used.
-z sendwait, --sendwait=sendwait
Minimal time interval between probes (default 0). If the
value is more than 10, then it specifies a number in
milliseconds, else it is a number of seconds (float point
values allowed too). Useful when some routers use rate-
limit for ICMP messages.
-e, --extensions
Show ICMP extensions (rfc4884). The general form is
CLASS/TYPE: followed by a hexadecimal dump. The MPLS
(rfc4950) is shown parsed, in a form:
MPLS:L=label,E=exp_use,S=stack_bottom,T=TTL (more objects
separated by / ). The Interface Information (rfc5837) is
shown parsed as well, in a following form:
{INC|SUB|OUT|NXT}:index,IP_addr,"name",mtu=MTU (all four
fields may be missing).
-A, --as-path-lookups
Perform AS path lookups in routing registries and print
results directly after the corresponding addresses.
-V, --version
Print the version and exit.
There are additional options intended for advanced usage (such as
alternate trace methods etc.):
--sport=port
Chooses the source port to use. Implies -N 1 -w 5 .
Normally source ports (if applicable) are chosen by the
system.
--fwmark=mark
Set the firewall mark for outgoing packets (since the Linux
kernel 2.6.25).
-M method, --module=name
Use specified method for traceroute operations. Default
traditional udp method has name default, icmp (-I) and tcp
(-T) have names icmp and tcp respectively.
Method-specific options can be passed by -O . Most methods
have their simple shortcuts, (-I means -M icmp, etc).
-O option, --options=options
Specifies some method-specific option. Several options are
separated by comma (or use several -O on cmdline). Each
method may have its own specific options, or many not have
them at all. To print information about available options,
use -O help.
-U, --udp
Use UDP to particular destination port for tracerouting
(instead of increasing the port per each probe). Default
port is 53 (dns).
-UL Use UDPLITE for tracerouting (default port is 53).
-D, --dccp
Use DCCP Requests for probes.
-P protocol, --protocol=protocol
Use raw packet of specified protocol for tracerouting.
Default protocol is 253 (rfc3692).
--mtu Discover MTU along the path being traced. Implies -F -N 1.
New mtu is printed once in a form of F=NUM at the first
probe of a hop which requires such mtu to be reached.
(Actually, the correspond "frag needed" icmp message
normally is sent by the previous hop).
Note, that some routers might cache once the seen
information on a fragmentation. Thus you can receive the
final mtu from a closer hop. Try to specify an unusual tos
by -t , this can help for one attempt (then it can be
cached there as well).
See -F option for more info.
--back Print the number of backward hops when it seems different
with the forward direction. This number is guessed in
assumption that remote hops send reply packets with initial
ttl set to either 64, or 128 or 255 (which seems a common
practice). It is printed as a negate value in a form of
'-NUM' .
In general, a particular traceroute method may have to be chosen
by -M name, but most of the methods have their simple cmdline
switches (you can see them after the method name, if present).
default
The traditional, ancient method of tracerouting. Used by default.
Probe packets are udp datagrams with so-called "unlikely"
destination ports. The "unlikely" port of the first probe is
33434, then for each next probe it is incremented by one. Since
the ports are expected to be unused, the destination host normally
returns "icmp unreach port" as a final response. (Nobody knows
what happens when some application listens for such ports,
though).
This method is allowed for unprivileged users.
icmp -I
Most usual method for now, which uses icmp echo packets for
probes.
If you can ping(8) the destination host, icmp tracerouting is
applicable as well.
This method may be allowed for unprivileged users since the kernel
3.0 (IPv4, for IPv6 since 3.11), which supports new dgram icmp (or
"ping") sockets. To allow such sockets, sysadmin should provide
net/ipv4/ping_group_range sysctl range to match any group of the
user.
Options:
raw Use only raw sockets (the traditional way).
This way is tried first by default (for compatibility
reasons), then new dgram icmp sockets as fallback.
dgram Use only dgram icmp sockets.
tcp -T
Well-known modern method, intended to bypass firewalls.
Uses the constant destination port (default is 80, http).
If some filters are present in the network path, then most
probably any "unlikely" udp ports (as for default method) or even
icmp echoes (as for icmp) are filtered, and whole tracerouting
will just stop at such a firewall. To bypass a network filter, we
have to use only allowed protocol/port combinations. If we trace
for some, say, mailserver, then more likely -T -p 25 can reach it,
even when -I can not.
This method uses well-known "half-open technique", which prevents
applications on the destination host from seeing our probes at
all. Normally, a tcp syn is sent. For non-listened ports we
receive tcp reset, and all is done. For active listening ports we
receive tcp syn+ack, but answer by tcp reset (instead of expected
tcp ack), this way the remote tcp session is dropped even without
the application ever taking notice.
There is a couple of options for tcp method:
syn,ack,fin,rst,psh,urg,ece,cwr
Sets specified tcp flags for probe packet, in any
combination.
flags=num
Sets the flags field in the tcp header exactly to num.
ecn Send syn packet with tcp flags ECE and CWR (for Explicit
Congestion Notification, rfc3168).
sack,timestamps,window_scaling
Use the corresponding tcp header option in the outgoing
probe packet.
sysctl Use current sysctl (/proc/sys/net/*) setting for the tcp
header options above and ecn. Always set by default, if
nothing else specified.
fastopen
Use fastopen tcp option (when syn), for initial cookie
negotiation only.
mss=[num]
Use value of num (or unchanged) for maxseg tcp header
option (when syn), and discover its clamping along the path
being traced. New changed mss is printed once in a form of
M=NUM at the first probe on which it was detected. Note,
some routers may return too short original fragment in the
time exceeded message, making the check impossible.
Besides that the responses may come in a different order.
All this can lead to a later place of the report (using
-N 1 can help for the order).
info Print tcp flags and supported options of final tcp replies
when the target host is reached. Allows to determine
whether an application listens the port and other useful
things. Supported tcp options are all that can be set by
-T -O, ie. mss, sack, timestamps, window_scaling and
fastopen, with the similar output format (a value for mss
and just presence for others).
Default options is syn,sysctl.
tcpconn
An initial implementation of tcp method, simple using connect(2)
call, which does full tcp session opening. Not recommended for
normal use, because a destination application is always affected
(and can be confused).
udp -U
Use udp datagram with constant destination port (default 53, dns).
Intended to bypass firewall as well.
Note, that unlike in tcp method, the correspond application on the
destination host always receive our probes (with random data), and
most can easily be confused by them. Most cases it will not
respond to our packets though, so we will never see the final hop
in the trace. (Fortunately, it seems that at least dns servers
replies with something angry).
This method is allowed for unprivileged users.
udplite -UL
Use udplite datagram for probes (with constant destination port,
default 53).
This method is allowed for unprivileged users.
Options:
coverage=num
Set udplite send coverage to num.
dccp -D
Use DCCP Request packets for probes (rfc4340).
This method uses the same "half-open technique" as used for TCP.
The default destination port is 33434.
Options:
service=num
Set DCCP service code to num (default is 1885957735).
raw -P proto
Send raw packet of protocol proto.
No protocol-specific headers are used, just IP header only.
Implies -N 1 -w 5 .
Options:
protocol=proto
Use IP protocol proto (default 253).
To speed up work, normally several probes are sent simultaneously.
On the other hand, it creates a "storm of packages", especially in
the reply direction. Routers can throttle the rate of icmp
responses, and some of replies can be lost. To avoid this,
decrease the number of simultaneous probes, or even set it to 1
(like in initial traceroute implementation), i.e. -N 1
The final (target) host can drop some of the simultaneous probes,
and might even answer only the latest ones. It can lead to extra
"looks like expired" hops near the final hop. We use a smart
algorithm to auto-detect such a situation, but if it cannot help
in your case, just use -N 1 too.
For even greater stability you can slow down the program's work by
-z option, for example use -z 0.5 for half-second pause between
probes.
To avoid an extra waiting, we use adaptive algorithm for timeouts
(see -w option for more info). It can lead to premature expiry
(especially when response times differ at times) and printing "*"
instead of a time. In such a case, switch this algorithm off, by
specifying -w with the desired timeout only (for example, -w 5).
If some hops report nothing for every method, the last chance to
obtain something is to use ping -R command (IPv4, and for nearest
8 hops only).
ping(8), ping6(8), tcpdump(8), netstat(8)
This page is part of the traceroute (trace route to network host)
project. Information about the project can be found at
⟨http://traceroute.sourceforge.net/⟩. If you have a bug report for
this manual page, send it to
traceroute-devel@lists.sourceforge.net. This page was obtained
from the tarball traceroute-2.1.6.tar.gz fetched from
⟨http://sourceforge.net/projects/traceroute/files/latest/download?source=files⟩
on 2025-08-11. If you discover any rendering problems in this
HTML version of the page, or you believe there is a better or more
up-to-date source for the page, or you have corrections or
improvements to the information in this COLOPHON (which is not
part of the original manual page), send a mail to
man-pages@man7.org
Traceroute 11 October 2006 TRACEROUTE(8)
Pages that refer to this page: tracepath(8)