
Linux/UNIX

System Programming

Essentials

Michael Kerrisk

man7.org

July 2025

© 2025, man7.org Training and Consulting /
Michael Kerrisk (mtk@man7.org). All rights reserved.

These training materials have been made available for personal,
noncommercial use. Except for personal use, no part of these training
materials may be printed, reproduced, or stored in a retrieval system. These
training materials may not be redistributed by any means, electronic,
mechanical, or otherwise, without prior written permission of the author. If
you find these materials hosted on a website other than the author’s own
website (http://man7.org/), then the materials are likely being distributed
in breach of copyright. Please report such redistribution to the author.

These training materials may not be used to provide training to others
without prior written permission of the author.

Every effort has been made to ensure that the material contained herein is
correct, including the development and testing of the example programs.
However, no warranty is expressed or implied, and the author shall not be
liable for loss or damage arising from the use of these programs. The
programs are made available under Free Software licenses; see the header
comments of individual source files for details.

For information about this course, visit
http://man7.org/training/.

For inquiries regarding training courses, please contact us at
training@man7.org.

Please send corrections and suggestions for improvements to this
course material to training@man7.org.

For information about The Linux Programming Interface, please
visit http://man7.org/tlpi/.

Revision: # d6f57652b7eb

This page intentionally blank

This page intentionally blank

Short table of contents

1 Course Introduction 1-1

2 Fundamental Concepts 2-1

3 File I/O 3-1

4 Processes 4-1

5 Signals 5-1

6 Process Lifecycle 6-1

7 System Call Tracing with strace 7-1

8 Wrapup 8-1

This page intentionally blank

This page intentionally blank

This page intentionally blank

Detailed table of contents

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Common abbreviations 1-13
1.4 Introductions 1-15

2 Fundamental Concepts 2-1
2.1 Error handling 2-3
2.2 System data types 2-10
2.3 Notes on code examples 2-15

3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

4 Processes 4-1
4.1 Process IDs 4-3
4.2 Process memory layout 4-6
4.3 Command-line arguments 4-9
4.4 The environment list 4-12
4.5 The /proc filesystem 4-17

5 Signals 5-1

Detailed table of contents

5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46

Detailed table of contents

6.11 Exercises 6-55
6.12 The exec() library functions 6-58

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29

8 Wrapup 8-1
8.1 Wrapup 8-3

This page intentionally blank

But, here’s a tech talk you might enjoy:

The Art of Code
Dylan Beattie, NDC London 2020

(A gem! Set aside an hour of your life to be thrilled, as have 5M people before you)

https://www.youtube.com/watch?v=6avJHaC3C2U&t

Linux System Programming Essentials

Course Introduction

Michael Kerrisk, man7.org © 2025

July 2025

mtk@man7.org

Outline Rev: # d6f57652b7eb

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Common abbreviations 1-13
1.4 Introductions 1-15

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Common abbreviations 1-13
1.4 Introductions 1-15

Course prerequisites

Prerequisites

(Good) reading knowledge of C

Can log in to Linux / UNIX and use basic commands

Knowledge of make(1) is helpful

(Can do a short tutorial during first practical session for
those new to make)

Assumptions
You are familiar with commonly used parts of standard C
library

e.g., stdio and malloc packages

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-4 §1.1

Course goals

Aimed at programmers building/understanding low-level
applications

Gain strong understanding of programming API that kernel
presents to user-space

System calls

Relevant C library functions

Other interfaces (e.g., /proc)

Necessarily, we sometimes delve into inner workings of
kernel

(But... not an internals course)

Course topics

Course flyer

For more detail, see TOC in course book(s)

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-5 §1.1

Lab sessions

Lots of lab sessions...

Pair/group work is strongly encouraged!
Usually gets us through practical sessions faster

⇒ so we can cover more topics

Read each exercise thoroughly before starting

I’ve seen the traps that people often fall into

⇒ exercise descriptions often include important hints

Lab sessions are not instructor down time...

⇒ One-on-one questions about course material or exercises

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-6 §1.1

Coding exercises

For coding exercises, you can use any suitable programming
language in which you are proficient

C/C++ (easiest...)

Go, D, Rust, & other languages that compile to native
machine code

Most features can also be exercised from scripting
languages such as Python, Ruby, and Perl

Template solutions are provided for most coding exercises

Filenames: ex.*.c

Look for “FIXMEs” to see what parts you must complete

" You need to edit corresponding Makefile to add a new
target for the executable

Solutions will be mailed out shortly after end of course

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-7 §1.1

Lab sessions: some thoughts on building code

Many warnings indicate real problems in the code; fix them

And the “harmless warnings” create noise that hides the
serious warnings; fix them too

This is a good thing: cc -Werror

Treat all warnings as errors

https://stackoverflow.com/questions/57842756/

why-should-i-always-enable-compiler-warnings

Rather than writing lots of code before first compile, use a
frequent edit-save-build cycle to catch compiler errors early

E.g., run the following in a separate window as you edit:

$ while inotifywait -q . ; do echo -e '\n\n'; make; done

inotifywait is provided in the inotify-tools package

(The echo command just injects some white space between
each build)

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-8 §1.1

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Common abbreviations 1-13
1.4 Introductions 1-15

Course materials

Slides / course book

Source code tarball

Location sent by email

Unpacked source code is a Git repository; you can
commit/revert changes, etc.

Kerrisk, M.T. 2010. The Linux Programming Interface
(TLPI), No Starch Press.

Further info on TLPI: http://man7.org/tlpi/

API changes since publication:
http://man7.org/tlpi/api_changes/

(Slides frequently reference TLPI in bottom RHS corner)

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-10 §1.2

Other resources

POSIX.1-2001 / SUSv3:
http://www.unix.org/version3/

POSIX.1-2008 / SUSv4:
http://www.unix.org/version4/

POSIX.1-2024 / SUSv5:
https://pubs.opengroup.org/onlinepubs/9799919799/

Manual pages

Section 2: system calls

Section 3: library functions

Section 7: overviews

Latest version online at
http://man7.org/linux/man-pages/

Latest tarball downloadable at
https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-11 §1.2

Books

General:
Stevens, W.R., and Rago, S.A. 2013. Advanced Programming in the UNIX
Environment (3rd edition). Addison-Wesley.

http://www.apuebook.com/

POSIX threads:

Butenhof, D.R. 1996. Programming with POSIX Threads. Addison-Wesley.

TCP/IP and network programming:

Fall, K.R. and Stevens, W.R. 2013. TCP/IP Illustrated, Volume 1: The Protocols
(2nd Edition). Addison-Wesley.

Stevens, W.R., Fenner, B., and Rudoff, A.M. 2004. UNIX Network
Programming,Volume 1 (3rd edition): The Sockets Networking API.
Addison-Wesley.

http://www.unpbook.com/

Stevens, W.R. 1999. UNIX Network Programming, Volume 2 (2nd edition):
Interprocess Communications. Prentice Hall.

http://www.kohala.com/start/unpv22e/unpv22e.html

Operating systems:
Tanenbaum, A.S., and Woodhull, A.S. 2006. Operating Systems: Design And
Implementation (3rd edition). Prentice Hall.

(The Minix book)

Comer, D. 2015. Operating System Design: The Xinu Approach (2nd edition)

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-12 §1.2

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Common abbreviations 1-13
1.4 Introductions 1-15

Common abbreviations used in slides

The following abbreviations are sometimes used in the slides:

ACL: access control list

COW: copy-on-write

CV: condition variable

CWD: current working directory

EA: extended attribute

EOF: end of file

FD: file descriptor

FS: filesystem

FTM: feature test macro

GID: group ID

rGID, eGID, sGID, fsGID

iff: “if and only if”

IPC: interprocess communication

KSE: kernel scheduling entity

MQ: message queue

MQD: message queue descriptor

NS: namespace

OFD: open file description

PG: process group

PID: process ID

PPID: parent process ID

SHM: shared memory

SID: session ID

SEM: semaphore

SUS: Single UNIX specification

UID: user ID

rUID, eUID, sUID, fsUID

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-14 §1.3

Outline

1 Course Introduction 1-1
1.1 Course overview 1-3
1.2 Course materials and resources 1-9
1.3 Common abbreviations 1-13
1.4 Introductions 1-15

Introductions: me

Programmer, trainer, writer

UNIX since 1987, Linux since mid-1990s

Active contributor to Linux
API review, testing, and documentation

API design and design review

Lots of testing, lots of bug reports, a few kernel patches

Maintainer of Linux man-pages project (2004-2021)

Documents kernel-user-space + C library APIs

Contributor since 2000

As maintainer: ≈23k commits, 196 releases

Author/coauthor of ≈440 manual pages

Kiwi in .de

(mtk@man7.org, PGP: 4096R/3A35CE5E)

http://linkedin.com/in/mkerrisk

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-16 §1.4

Introductions: you

In brief:

Who are you?

If virtual: where are you?

Two interesting things about you / things you like to do
when you are not in front of a keyboard

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-17 §1.4

Questions policy

General policy: ask questions any time, in one of the
following ways:

On Slack

If online, click the “Raise hand” button

I’ll usually see it, and I get to see your name as well

Or out loud

But, wait for a quiet point

And if online, please announce your name, since I might not
be able to see you

In the event that questions slow us down too much, I may
say: “batch your questions until next Question penguin slide”

System Programming Essentials ©2025 M. Kerrisk Course Introduction 1-18 §1.4

This page intentionally blank

This page intentionally blank

Linux System Programming Essentials

Fundamental Concepts

Michael Kerrisk, man7.org © 2025

July 2025

mtk@man7.org

Outline Rev: # d6f57652b7eb

2 Fundamental Concepts 2-1
2.1 Error handling 2-3
2.2 System data types 2-10
2.3 Notes on code examples 2-15

Outline

2 Fundamental Concepts 2-1
2.1 Error handling 2-3
2.2 System data types 2-10
2.3 Notes on code examples 2-15

Error handling

Most system calls and library functions return a status
indicating success or failure

On failure, most system calls:

Return –1

Place integer value in global variable errno to indicate cause

Some library functions follow same convention

Often, we’ll omit return values from slides, where they follow
usual conventions

Check manual pages for details

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-4 §2.1

Error handling

Return status should always be tested

" Inspect errno only if result status indicates failure

APIs do not reset errno to 0 on success

A successful call may modify errno (POSIX allows this)

E.g., this is wrong:

fd = open(pathname, O_RDONLY);

printf("open() has returned\n"); // Might modify errno!

if (fd == -1) { // Did open() fail?
perror("open"); // Print message based on 'errno'
exit(EXIT_FAILURE);

}

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-5 §2.1

errno

When an API call fails, errno is set to indicate cause

Integer value, global variable

In multithreading environment, each thread has private
errno

Error numbers in errno are > 0

<errno.h> defines symbolic names for error numbers

#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
...

errno(1) can be used to search for errors by number or
name

Part of moreutils package (since 2012)

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-6 §2.1

Checking for errors

cnt = read(fd, buf, numbytes);

if (cnt == -1) { /* Was there an error? */
if (errno == EINTR)

fprintf(stderr, "read() was interrupted by a signal\n");
else if (errno == EBADF)

fprintf(stderr, "read() given bad file descriptor\n");
else {

/* Some other error occurred */
}

}

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-7 §2.1

Displaying error messages

#include <stdio.h>
void perror(const char *msg);

Outputs to stderr :

msg + “: ” + string corresponding to value in errno

E.g., if errno contains EBADF, perror("close") would display:
close: Bad file descriptor

Simple error handling:

fd = open(pathname, flags, mode);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

(More sophisticated programs might take actions other than
terminating on syscall error)

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-8 §2.1

Displaying error messages

#include <string.h>
char *strerror(int errnum);

Returns an error string corresponding to error in errnum

Same string as printed by perror()

Unknown error number? ⇒ "Unknown error nnn"

Or NULL on some systems

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-9 §2.1

Outline

2 Fundamental Concepts 2-1
2.1 Error handling 2-3
2.2 System data types 2-10
2.3 Notes on code examples 2-15

System data types

Various system info needs to be represented in C
Process IDs, user IDs, file offsets, etc.

Using native C data types (e.g., int, long) in application
code would be nonportable; e.g.:

sizeof(long) might be 4 on one system, but 8 on another

One system might use int for PIDs, while another uses long

Even on same system, things may change across versions
E.g., in kernel 2.4, Linux switched from 16 to 32-bit UIDs

⇒ POSIX defines system data types:
Implementations must suitably define each system data type

Defined via typedef; e.g., typedef int pid_t

Most types have names suffixed “_t”

Applications should use these types; e.g., pid_t mypid;

⇒ will compile to correct types on any conformant system

[TLPI §3.6.2]

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-11 §2.2

Examples of system data types

Data type
POSIX type
requirement

Description

uid_t Integer User ID
gid_t Integer Group ID
pid_t Signed integer Process ID

id_t Integer
Generic ID type; can hold pid_t,
uid_t, gid_t

off_t Signed integer File offset or size
sigset_t Integer or structure Signal set
size_t Unsigned integer Size of object (in bytes)
ssize_t Signed integer Size of object or error indication
time_t Integer/real-floating Time in seconds since Epoch
timer_t Arithmetic type POSIX timer ID

(Arithmetic type ∈ integer or floating type)

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-12 §2.2

Printing system data types

Need to take care when passing system data types to printf()

Example: pid_t can be short, int, or long

Suppose we write:

printf("My PID is: %d\n", getpid());

Works fine if:

pid_t is int

pid_t is short (C promotes short argument to int)

But what if pid_t is long (and long is bigger than int)?

⇒ argument exceeds range understood by format specifier
(top bytes will be lost)

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-13 §2.2

Printing system data types

On virtually all implementations, most integer system data
types are long or smaller

⇒ Promote to long when printing system data types

printf("My PID is: %ld\n", (long) getpid());

Most notable exception: off_t is typically long long

Promote to long long for printf()

printf("Offset is %lld\n",
(long long) lseek(fd, 0, SEEK_CUR));

Can also use %zu and %zd for size_t and ssize_t

C99 has intmax_t (uintmax_t) with %jd (%ju) printf()
specifier

Solution for all integer types, but not on pre-C99 systems

Must include <stdint.h> to get these type definitions

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-14 §2.2

Outline

2 Fundamental Concepts 2-1
2.1 Error handling 2-3
2.2 System data types 2-10
2.3 Notes on code examples 2-15

Code examples presented in course

Code tarball == code from TLPI + further code for course

Examples on slides edited/excerpted for brevity

E.g., error-handling code may be omitted

Slides always show pathname for full source code

Full source code always includes error-handling code

Code license:

GNU GPL v3 for programs

GNU Lesser GPL v3 for libraries

http://www.gnu.org/licenses/#GPL
Understanding Open Source and Free Software Licensing,
A.M. St Laurent, 2004

Open Source Licensing: Software Freedom and Intellectual Property
Law, L. Rosen, 2004

Open Source Software: Rechtliche Rahmenbedingungen der Freien
Software, Till Jaeger, 2020

Droit des logiciels, F. Pellegrini & S. Canevet, 2013

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-16 §2.3

Example code lib/ subdirectory

lib/ subdirectory contains code of a few functions
commonly used in examples

camelCase function name?

⇒ It’s mine

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-17 §2.3

Common header file

Many code examples make use of header file tlpi_hdr.h

Goal: make code examples a little shorter

tlpi_hdr.h:

Includes a few frequently used header files

Includes declarations of some error-handling functions

[TLPI §3.5.2]

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-18 §2.3

Error-handling functions used in examples

Could handle errors as follows:

fd = open(pathname, flags, mode);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

Verbose! To make error handling more compact, I define
some simple error-handling functions

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-19 §2.3

Error-handling functions used in examples

#include "tlpi_hdr.h"
errExit(const char *format, ...);

Prints error message on stderr that includes:
Symbolic name for errno value (via some trickery)

strerror() description for current errno value

Text from the printf()-style message supplied in arguments

A terminating newline

Terminates program with exit status EXIT_FAILURE (1)

Example:

if (close(fd) == -1)
errExit("close (fd=%d)", fd);

might produce:

ERROR [EBADF Bad file descriptor] close (fd=5)

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-20 §2.3

Error-handling functions used in examples

#include "tlpi_hdr.h"
errMsg(const char *format, ...);

Like errExit(), but does not terminate program

#include "tlpi_hdr.h"
fatal(const char *format, ...);

Displays a printf()-style message + newline

Terminates program with exit status EXIT_FAILURE (1)

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-21 §2.3

Building the sample code

You can manually compile the example programs, but there
is also a Makefile in each directory

⇒ Typing make in source code root directory builds the
programs in most subdirectories

If you encounter build errors relating to ACLs, capabilities, or
SELinux, see http://man7.org/tlpi/code/faq.html

Preferred solution is to install the necessary packages:

Debian, Ubuntu: libcap-dev, libacl1-dev, libreadline-dev
libcrypt-dev

RPM-based systems: libcap-devel, libacl-devel,
readline-devel libxcrypt-devel

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-22 §2.3

Using library functions from the sample code

To use my library functions in your code:

Include tlpi_hdr.h in your C source file

Located in lib/ subdirectory in source code

Link against my library, libtlpi.a, located in source
code root directory

To build library, run make in the source code root directory
or in lib/ subdirectory

Method 1: Place your program in one of “my” directories,
add target to corresponding Makefile, and build using make

Method 2: Manually compile with the following command:

cc -Isrc-root/lib yourprog.c src-root/libtlpi.a

src-root must be replaced with the absolute or relative path
of source code root directory

System Programming Essentials ©2025 M. Kerrisk Fundamental Concepts 2-23 §2.3

This page intentionally blank

But, here’s a tech talk you might enjoy:

The untold story of BPF
Alexei Starovoitov, Kernel Recipes 2022

https://www.youtube.com/watch?v=DAvZH13725I

Linux System Programming Essentials

File I/O

Michael Kerrisk, man7.org © 2025

July 2025

mtk@man7.org

Outline Rev: # d6f57652b7eb

3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

Outline

3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

Files

“On UNIX, everything is a file”

More correctly: “everything is a file descriptor”

Note: the term file can be ambiguous:

A generic term, covering disk files, directories, sockets,
FIFOs, terminals and other devices and so on

Or specifically, a disk file in a filesystem

To clearly distinguish the latter, the term regular file is
sometimes used

System Programming Essentials ©2025 M. Kerrisk File I/O 3-4 §3.1

System calls versus stdio

C programs usually use stdio package for file I/O

Library functions layered on top of I/O system calls

System calls Library functions
file descriptor (int) file stream (FILE *)
open(), close() fopen(), fclose()
lseek() fseek(), ftell()
read() fgets(), fscanf(), fread() . . .
write() fputs(), fprintf(), fwrite(), . . .
– feof(), ferror()

We presume understanding of stdio ; ⇒ focus on system calls

System Programming Essentials ©2025 M. Kerrisk File I/O 3-5 §3.1

File descriptors

All I/O is done using file descriptors (FDs)

nonnegative integer that identifies an open file

Used for all types of files

terminals, regular files, pipes, FIFOs, devices, sockets, ...

3 FDs are normally available to programs run from shell:

(POSIX names are defined in <unistd.h>)

FD Purpose POSIX name stdio stream
0 Standard input STDIN_FILENO stdin
1 Standard output STDOUT_FILENO stdout
2 Standard error STDERR_FILENO stderr

System Programming Essentials ©2025 M. Kerrisk File I/O 3-6 §3.1

Key file I/O system calls

Four fundamental calls:

open() : open a file, optionally creating it if needed

Returns file descriptor used by remaining calls

read() : input

write() : output

close() : close file descriptor

System Programming Essentials ©2025 M. Kerrisk File I/O 3-7 §3.1

Outline

3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

open() : opening a file

#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags, ... /* mode_t mode */);

Opens existing file / creates and opens new file

Arguments:

pathname identifies file to open

flags controls semantics of call

e.g., open an existing file vs create a new file

mode specifies permissions when creating new file

Returns: a file descriptor (nonnegative integer)

(Guaranteed to be lowest available FD)

[TLPI §4.3]

System Programming Essentials ©2025 M. Kerrisk File I/O 3-9 §3.2

open() flags argument

flags is formed by ORing (|) together:

Access mode

Specify exactly one of O_RDONLY, O_WRONLY, or O_RDWR

File creation flags (bit flags)

File status flags (bit flags)

[TLPI §4.3.1]

System Programming Essentials ©2025 M. Kerrisk File I/O 3-10 §3.2

File creation flags

File creation flags:

Affect behavior of open() call

Can’t be retrieved or changed

Examples:
O_CREAT: create file if it doesn’t exist

mode argument must be specified

Without O_CREAT, can open only an existing file (else:
ENOENT)

O_EXCL: create “exclusively”

Give an error (EEXIST) if file already exists

Only meaningful with O_CREAT

O_TRUNC: truncate existing file to zero length

I.e., discard existing file content

System Programming Essentials ©2025 M. Kerrisk File I/O 3-11 §3.2

File status flags

File status flags:

Affect semantics of subsequent file I/O

Can be retrieved and modified using fcntl()

Examples:

O_APPEND: always append writes to end of file

O_NONBLOCK: nonblocking I/O

System Programming Essentials ©2025 M. Kerrisk File I/O 3-12 §3.2

open() examples

Open existing file for reading:

fd = open("script.txt", O_RDONLY);

Open file for read-write, create if necessary, ensure we are
creator:

fd = open("myfile.txt", O_CREAT | O_EXCL | O_RDWR,
S_IRUSR | S_IWUSR); /* rw------- */

Open file for writing, creating if necessary:

fd = open("myfile.txt", O_CREAT | O_WRONLY, S_IRUSR);

File opened for writing, but created with only read
permission!

System Programming Essentials ©2025 M. Kerrisk File I/O 3-13 §3.2

read() : reading from a file

#include <unistd.h>
ssize_t read(int fd, void *buffer, size_t count);

fd : file descriptor

buffer : pointer to buffer to store data

count : number of bytes to read

(buffer must be at least this big)

(ssize_t and size_t are signed and unsigned integer types)

Returns:
> 0: number of bytes read

May be < count (e.g., terminal read() gets only one line)

0: end of file

–1: error

" No terminating null byte is placed at end of buffer

System Programming Essentials ©2025 M. Kerrisk File I/O 3-14 §3.2

write() : writing to a file

#include <unistd.h>
ssize_t write(int fd, const void *buffer, size_t count);

fd : file descriptor

buffer : pointer to data to be written

count : number of bytes to write

Returns:
Number of bytes written

May be < count (a “partial write”)
(e.g., write fills device, or insufficient space to write entire
buffer to nonblocking socket)

–1 on error

System Programming Essentials ©2025 M. Kerrisk File I/O 3-15 §3.2

close() : closing a file

#include <unistd.h>
int close(int fd);

fd : file descriptor

Returns:

0: success

–1: error

Really should check for error!
Accidentally closing same FD twice

I.e., detect program logic error

Filesystem-specific errors

E.g., NFS commit failures may be reported only at close()

Note: close() always releases FD, even on failure return

See close(2) manual page

System Programming Essentials ©2025 M. Kerrisk File I/O 3-16 §3.2

Example: copy.c

$./copy old-file new-file

A simple version of cp(1)

System Programming Essentials ©2025 M. Kerrisk File I/O 3-17 §3.2

Example: fileio/copy.c

Always remember to handle errors!

1 #define BUF_SIZE 1024
2 char buf[BUF_SIZE];
3
4 int infd = open(argv[1], O_RDONLY);
5 if (infd == -1) errExit("open %s", argv[1]);
6
7 int flags = O_CREAT | O_WRONLY | O_TRUNC;
8 mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP; /* rw-r----- */
9 int outfd = open(argv[2], flags, mode);

10 if (outfd == -1) errExit("open %s", argv[2]);
11
12 ssize_t nread;
13 while ((nread = read(infd, buf, BUF_SIZE)) > 0)
14 if (write(outfd, buf, nread) != nread)
15 fatal("write() returned error or partial write occurred");
16 if (nread == -1) errExit("read");
17
18 if (close(infd) == -1) errExit("close");
19 if (close(outfd) == -1) errExit("close");

System Programming Essentials ©2025 M. Kerrisk File I/O 3-18 §3.2

Universality of I/O

The fundamental I/O system calls work on almost all file
types:

$ ls > mylist
$./copy mylist new # Regular file

$./copy mylist /dev/tty # Device

$ mkfifo f # FIFO
$ cat f & # (reads from FIFO)
$./copy mylist f # (writes to FIFO)

System Programming Essentials ©2025 M. Kerrisk File I/O 3-19 §3.2

Outline

3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

API Summary

int open(const char *pathname, int flags, ... /* mode_t mode */);
// Returns a file descriptor

ssize_t read(int fd, void *buffer, size_t count);
// Returns: # of bytes actually read or 0 for EOF

ssize_t write(int fd, const void *buffer, size_t count);
// Returns: # of bytes actually written

int close(int fd);

System Programming Essentials ©2025 M. Kerrisk File I/O 3-21 §3.3

Outline

3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

Notes for online practical sessions

Small groups in breakout rooms

Write a note into Slack if you have a preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room

I will circulate regularly between rooms to answer questions

Zoom has an “Ask for help” button...

Keep an eye on the #general Slack channel

Perhaps with further info about exercise;

Or a note that the exercise merges into a break

When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

Then I have an idea of how many people have finished

System Programming Essentials ©2025 M. Kerrisk File I/O 3-23 §3.4

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”

Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can

Turn on line numbering in your editor
In vim use: :set number

In emacs use: M-x display-line-numbers-mode <RETURN>
M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim use: :set nornu

In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

System Programming Essentials ©2025 M. Kerrisk File I/O 3-24 §3.4

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

Enter the command tmate in an X-term, and you’ll see the following:

$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via Slack or another channel

Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type

Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

System Programming Essentials ©2025 M. Kerrisk File I/O 3-25 §3.4

Exercise notes

For many exercises, there are templates for the solutions

Filenames: ex.*.c

Look for FIXMEs to see what pieces of code you must add

" You will need to edit the corresponding Makefile to
add a new target for the executable

Look for the EXERCISE_FILES_EXE macro

-EXERCISE_FILES_EXE = # ex.prog_a ex.prob_b
+EXERCISE_FILES_EXE = ex.prog_a # ex.prog_b

Get a make tutorial now if you need one

System Programming Essentials ©2025 M. Kerrisk File I/O 3-26 §3.4

Exercise

1 Using open(), close(), read(), and write(), implement the command
tee [-a] file ([template: fileio/ex.tee.c]). This command
writes a copy of its standard input to standard output and to file. If
file does not exist, it should be created. If file already exists, it
should be truncated to zero length (O_TRUNC). The program should
support the -a option, which appends (O_APPEND) output to the file if
it already exists, rather than truncating the file.

Some hints:

You can build ../libtlpi.a by doing make in source code root directory.

Standard input & output are automatically opened for a process.

Remember that you will need to add a target in the Makefile!

After first doing some simple command-line testing, test using the unit test
in the Makefile: make tee_test.

Why does “man open” show the wrong manual page? It finds a page in the
wrong section first. Try “man 2 open” instead.

while inotifywait -q . ; do echo -e '\n\n'; make; done

You may need to install the inotify-tools package

Command-line options can be parsed using getopt(3).

System Programming Essentials ©2025 M. Kerrisk File I/O 3-27 §3.4

This page intentionally blank

Linux System Programming Essentials

Processes

Michael Kerrisk, man7.org © 2025

July 2025

mtk@man7.org

Outline Rev: # d6f57652b7eb

4 Processes 4-1
4.1 Process IDs 4-3
4.2 Process memory layout 4-6
4.3 Command-line arguments 4-9
4.4 The environment list 4-12
4.5 The /proc filesystem 4-17

Outline

4 Processes 4-1
4.1 Process IDs 4-3
4.2 Process memory layout 4-6
4.3 Command-line arguments 4-9
4.4 The environment list 4-12
4.5 The /proc filesystem 4-17

Process ID

#include <unistd.h>
pid_t getpid(void);

Process == running instance of a program
Program + program loader (kernel) ⇒ process

Every process has a process ID (PID)
pid_t : positive integer that uniquely identifies process

getpid() returns callers’s PID

Kernel allocates PIDs using “elevator” algorithm
When elevator reaches top of range, it then cycles, reusing
PIDs starting at low end of range

Maximum PID is 32767 on Linux
All PID slots used? ⇒ fork() fails with EAGAIN

Limit adjustable via /proc/sys/kernel/pid_max (up to
kernel’s PID_MAX_LIMIT constant, typically 4*1024*1024)

[TLPI §6.2]

System Programming Essentials ©2025 M. Kerrisk Processes 4-4 §4.1

Parent process ID

#include <unistd.h>
pid_t getppid(void);

Every process has a parent

Typically, process that created this process using fork()

Parent process is informed when its child terminates

All processes on system thus form a tree

At root is init, PID 1, the ancestor of all processes

“Orphaned” processes are “adopted” by init

getppid() returns PID of caller’s parent process (PPID)

[TLPI §6.2]

System Programming Essentials ©2025 M. Kerrisk Processes 4-5 §4.1

Outline

4 Processes 4-1
4.1 Process IDs 4-3
4.2 Process memory layout 4-6
4.3 Command-line arguments 4-9
4.4 The environment list 4-12
4.5 The /proc filesystem 4-17

Process memory layout

Virtual memory of a process is divided into segments:
Text: machine-language instructions

Marked read-only to prevent self-modification

Multiple processes can share same code in memory

Initialized data: global and static variables that are
explicitly initialized

Values read from program file when process is created

Uninitialized data: global and static variables that are not
explicitly initialized

Initialized to zero when process is created

Stack: storage for function local variables and call linkage
info (saved SP and PC registers)

Heap: an area from which memory can be dynamically
allocated and deallocated

malloc() and free()

System Programming Essentials ©2025 M. Kerrisk Processes 4-7 §4.2

Process memory layout (simplified)

argv, environ

Stack

(grows downward)

(unallocated memory)

Heap

(grows upward)

Uninitialized data (bss)

Initialized data

Te xt (program code)

Memory

mappings

placed here

Low virtual

address

High virtual

address

[TLPI §6.3]

System Programming Essentials ©2025 M. Kerrisk Processes 4-8 §4.2

Outline

4 Processes 4-1
4.1 Process IDs 4-3
4.2 Process memory layout 4-6
4.3 Command-line arguments 4-9
4.4 The environment list 4-12
4.5 The /proc filesystem 4-17

Command-line arguments

Command-line arguments of a program provided as first two
arguments of main()

Conventionally named argc and argv

int argc : number of arguments

char *argv[] : array of pointers to arguments (strings)

argv[0] == name used to invoke program

argv[argc] == NULL

E.g., for the command, necho hello world:

[TLPI §6.6]

System Programming Essentials ©2025 M. Kerrisk Processes 4-10 §4.3

procexec/show_argv.c

Display command-line arguments of program
int main(int argc, char *argv[]) {

printf("Program invoked with:\n");
printf(" argv[0] == %s\n\n", argv[0]);

printf("Remaining arguments:\n");
for (int j = 1; ; j++) {

printf(" argv[%d] = %s\n", j, argv[j]);
if (argv[j] == NULL)

break;
}
exit(EXIT_SUCCESS);

}

Example run:
$./show_argv a b c
Program invoked with:

argv[0] == ./show_argv

Remaining arguments:
argv[1] = a
argv[2] = b
argv[3] = c
argv[4] = (null)

System Programming Essentials ©2025 M. Kerrisk Processes 4-11 §4.3

Outline

4 Processes 4-1
4.1 Process IDs 4-3
4.2 Process memory layout 4-6
4.3 Command-line arguments 4-9
4.4 The environment list 4-12
4.5 The /proc filesystem 4-17

Environment list (environ)

Each process has a list of environment variables

Strings of form name=value

New process inherits copy of parent’s environment

Simple (one-way) interprocess communication

Commonly used to control behavior of programs

Examples:

HOME: user’s home directory (initialized at login)

PATH: list of directories to search for executable programs

EDITOR: user’s preferred editor

[TLPI §6.7]

System Programming Essentials ©2025 M. Kerrisk Processes 4-13 §4.4

Environment list (environ)

Can create environment variables within shell:

$ MANWIDTH=72 # Create shell var.
$ export MANWIDTH # Turn shell var. into environment var.
$ man getpid

Or: export MANWIDTH=72

All processes created by shell will inherit definition

Creating an environment variable for a single command
(does not modify shell’s environment):

$ MANWIDTH=72 man getpid

To list all environment variables, use env(1) or printenv(1)

System Programming Essentials ©2025 M. Kerrisk Processes 4-14 §4.4

Accessing the environment from a program

Environment list can be accessed via a global variable:

extern char **environ;

NULL-terminated array of pointers to strings:

Displaying environment:

for (char **ep = environ; *ep != NULL; ep++)
puts(*ep);

System Programming Essentials ©2025 M. Kerrisk Processes 4-15 §4.4

Environment variable APIs

Fetching value of an EV: value = getenv("NAME");

Creating/modifying an EV:

putenv("NAME=value");

setenv("NAME", "value", overwrite);

Removing an EV: unsetenv("NAME");

/proc/PID/environ can be used (with suitable
permissions) to view environment of another process

See manual pages and TLPI §6.7

System Programming Essentials ©2025 M. Kerrisk Processes 4-16 §4.4

Outline

4 Processes 4-1
4.1 Process IDs 4-3
4.2 Process memory layout 4-6
4.3 Command-line arguments 4-9
4.4 The environment list 4-12
4.5 The /proc filesystem 4-17

The /proc filesystem

Pseudofilesystem that exposes kernel information via
filesystem metaphor

Structured as a set of subdirectories and files

proc(5) manual page

Files don’t really exist

Created on-the-fly when pathnames under /proc are
accessed

Many files read-only

Some files are writable ⇒ can update kernel settings

System Programming Essentials ©2025 M. Kerrisk Processes 4-18 §4.5

The /proc filesystem: examples

/proc/cmdline: command line used to start kernel

/proc/cpuinfo: info about CPUs on the system

/proc/meminfo: info about memory and memory usage

/proc/modules: info about loaded kernel modules

/proc/sys/fs/: files and subdirectories with
filesystem-related info

/proc/sys/kernel/: files and subdirectories with various
readable/settable kernel parameters

/proc/sys/net/: files and subdirectories with various
readable/settable networking parameters

System Programming Essentials ©2025 M. Kerrisk Processes 4-19 §4.5

/proc/PID/ directories

One /proc/PID/ subdirectory for each running process

Subdirectories and files exposing info about process with
corresponding PID

Some files publicly readable, some readable only by process
owner; a few files writable

Examples

cmdline: command line used to start program

cwd: current working directory

environ: environment of process

fd: directory with info about open file descriptors

limits: resource limits

maps: mappings in virtual address space

status: (lots of) info about process

System Programming Essentials ©2025 M. Kerrisk Processes 4-20 §4.5

Linux System Programming Essentials

Signals

Michael Kerrisk, man7.org © 2025

July 2025

mtk@man7.org

Outline Rev: # d6f57652b7eb

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Signals are a notification mechanism

Signal == notification to a process that an event occurred

“Software interrupts”

asynchronous: receiver (generally) can’t predict when a
signal will occur

System Programming Essentials ©2025 M. Kerrisk Signals 5-4 §5.1

Signal types

64 signals (on Linux)

Each signal has a unique integer value

Numbered starting at 1 "

Defined symbolically in <signal.h>:

Names of form SIGxxx

e.g., signal 2 is SIGINT (“terminal interrupt”)

Two broad categories of signals:
“Standard” signals (1 to 31)

Mostly for kernel-defined purposes

Realtime signals (32 to 64)

Exist for user-defined purposes

[TLPI §20.1]

System Programming Essentials ©2025 M. Kerrisk Signals 5-5 §5.1

Signal generation

Signals can be sent to a process by:

The kernel (the common case)

Another process (with suitable permissions)

kill(pid, sig) and related APIs

Kernel generates signals for various events, e.g.:

Attempt to access a nonexistent memory address (SIGSEGV)

Terminal interrupt character (Control-C) was typed
(SIGINT)

Child process terminated (SIGCHLD)

Process CPU time limit exceeded (SIGXCPU)

[TLPI §20.1]

System Programming Essentials ©2025 M. Kerrisk Signals 5-6 §5.1

Terminology

Some terminology:

A signal is generated when an event occurs

Later, a signal is delivered to the process, which then takes
some action in response

Between generation and delivery, a signal is pending

We can block (delay) delivery of specific signals by adding
them to process’s signal mask

Signal mask == set of signals whose delivery is
blocked

Pending signal is delivered only after it is unblocked

[TLPI §20.1]

System Programming Essentials ©2025 M. Kerrisk Signals 5-7 §5.1

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Signal default actions

When a signal is delivered, a process takes one of these
default actions:

Ignore: signal is discarded by kernel, has no effect on
process

Terminate: process is terminated (“killed”)

Core dump + terminate: process produces a core dump
and is terminated

Core dump file can be used to examine state of program
inside a debugger

See also core(5) manual page

Stop: execution of process is suspended

Continue: execution of a stopped process is resumed

Default action for each signal is signal-specific

[TLPI §20.2]

System Programming Essentials ©2025 M. Kerrisk Signals 5-9 §5.2

Standard signals and their default actions

Name Description Default
SIGABRT Abort process Core
SIGALRM Real-time timer expiration Term
SIGBUS Memory access error Core
SIGCHLD Child stopped or terminated Ignore
SIGCONT Continue if stopped Cont
SIGFPE Arithmetic exception Core
SIGHUP Hangup Term
SIGILL Illegal instruction Core
SIGINT Interrupt from keyboard Term
SIGIO I/O possible Term
SIGKILL Sure kill Term
SIGPIPE Broken pipe Term
SIGPROF Profiling timer expired Term
SIGPWR Power about to fail Term
SIGQUIT Terminal quit Core
SIGSEGV Invalid memory reference Core
SIGSTKFLT Stack fault on coprocessor Term
SIGSTOP Sure stop Stop
SIGSYS Invalid system call Core
SIGTERM Terminate process Term
SIGTRAP Trace/breakpoint trap Core
SIGTSTP Terminal stop Stop
SIGTTIN Terminal input from background Stop
SIGTTOU Terminal output from background Stop
SIGURG Urgent data on socket Ignore
SIGUSR1 User-defined signal 1 Term
SIGUSR2 User-defined signal 2 Term
SIGVTALRM Virtual timer expired Term
SIGWINCH Terminal window size changed Ignore
SIGXCPU CPU time limit exceeded Core
SIGXFSZ File size limit exceeded Core

Signal default actions are:

Term: terminate the process

Core: produce core dump and
terminate the process

Ignore: ignore the signal

Stop: stop (suspend) the process

Cont: resume process (if stopped)

SIGKILL and SIGSTOP can’t be caught,
blocked, or ignored

TLPI §20.2

System Programming Essentials ©2025 M. Kerrisk Signals 5-10 §5.2

Stop and continue signals

Certain signals stop a process, freezing its execution

Examples:

SIGTSTP: “terminal stop” signal, generated by typing
Control-Z

SIGSTOP: “sure stop” signal

SIGCONT causes a stopped process to resume execution

SIGCONT is ignored if process is not stopped

Most common use of these signals is in shell job control

System Programming Essentials ©2025 M. Kerrisk Signals 5-11 §5.2

Changing a signal’s disposition

Instead of default, we can change a signal’s disposition to:

Ignore the signal

Handle (“catch”) the signal: execute a user-defined
function upon delivery of the signal

Revert to the default action

Useful if we earlier changed disposition

Can’t change disposition to terminate or core dump +
terminate

But, a signal handler can emulate these behaviors

Can’t change disposition of SIGKILL or SIGSTOP (error:
EINVAL)

So, they always kill or stop a process

System Programming Essentials ©2025 M. Kerrisk Signals 5-12 §5.2

Changing a signal’s disposition: sigaction()

#include <signal.h>
int sigaction(int sig, const struct sigaction *act,

struct sigaction *oldact);

sigaction() changes (and/or retrieves) disposition of signal sig

sigaction structure describes a signal’s disposition

act points to structure specifying new disposition for sig

oldact returns previous disposition for sig

Can be NULL if we don’t care

sigaction(sig, NULL, &oldact) returns current
disposition, without changing it

[TLPI §20.13]

System Programming Essentials ©2025 M. Kerrisk Signals 5-13 §5.2

sigaction structure

struct sigaction {
void (*sa_handler)(int);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};

sa_handler specifies disposition of signal:

Address of a signal handler function

SIG_IGN: ignore signal

SIG_DFL: revert to default disposition

sa_mask : signals to block while handler is executing

Field is initialized using macros described in sigsetops(3)

sa_flags : bit mask of flags affecting invocation of handler

sa_restorer : not for application use

Used internally to implement “signal trampoline”

System Programming Essentials ©2025 M. Kerrisk Signals 5-14 §5.2

Ignoring a signal (signals/ignore_signal.c)

int ignoreSignal(int sig)
{

struct sigaction sa;

sa.sa_handler = SIG_IGN;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
return sigaction(sig, &sa, NULL);

}

A “library function” that ignores specified signal

sa_mask field is significant only when establishing a signal
handler, but for best practice we initialize to sensible value

System Programming Essentials ©2025 M. Kerrisk Signals 5-15 §5.2

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Displaying signal descriptions

#define _GNU_SOURCE
#include <string.h>
char *strsignal(int sig);

Returns string describing signal sig

NSIG constant is 1 greater than maximum signal number

Define _GNU_SOURCE to get definition from <signal.h>

[TLPI §20.8]

System Programming Essentials ©2025 M. Kerrisk Signals 5-17 §5.3

Example: signals/t_strsignal.c

int main(int argc, char *argv[]) {
for (int sig = 1; sig < NSIG; sig++)

printf("%2d: %s\n", sig, strsignal(sig));

exit(EXIT_SUCCESS);
}

$./t_strsignal
1: Hangup
2: Interrupt
3: Quit
4: Illegal instruction
5: Trace/breakpoint trap
6: Aborted
7: Bus error
8: Floating point exception
9: Killed

10: User defined signal 1
11: Segmentation fault
12: User defined signal 2
13: Broken pipe
...

System Programming Essentials ©2025 M. Kerrisk Signals 5-18 §5.3

Waiting for a signal: pause()

#include <unistd.h>
int pause(void);

Blocks execution of caller until a signal is caught

Always returns –1 with errno set to EINTR

(Standard return for blocking system call that is interrupted
by a signal handler)

(See also sigsuspend(2))

[TLPI §20.14]

System Programming Essentials ©2025 M. Kerrisk Signals 5-19 §5.3

Other APIs to learn about

sigprocmask(2) : explicitly modify process signal mask to
control which signals are blocked

sigpending(2) : discover which signals are pending for calling
process

System Programming Essentials ©2025 M. Kerrisk Signals 5-20 §5.3

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Signal handlers

Programmer-defined function

Called with one integer argument: number of signal

⇒ handler installed for multiple signals can differentiate...

Returns void

void

myHandler(int sig)
{

/* Actions to be performed when signal is delivered */
}

[TLPI §20.4]

System Programming Essentials ©2025 M. Kerrisk Signals 5-22 §5.4

Signal handler invocation

Automatically invoked by kernel when signal is delivered:

Can interrupt main program flow at any time

On return, execution continues at point of interruption

System Programming Essentials ©2025 M. Kerrisk Signals 5-23 §5.4

Example: signals/ouch_sigaction.c

Print “Ouch!” when Control-C is typed at keyboard

1 static void sigHandler(int sig) {
2 printf("Ouch!\n"); /* UNSAFE */
3 }
4
5 int main(int argc, char *argv[]) {
6 struct sigaction sa;
7 sa.sa_flags = 0; /* No flags */
8 sa.sa_handler = sigHandler; /* Handler function */
9 sigemptyset(&sa.sa_mask); /* Don't block additional signals

10 during invocation of handler */
11 if (sigaction(SIGINT, &sa, NULL) == -1)
12 errExit("sigaction");
13
14 for (;;)
15 pause(); /* Wait for a signal */
16 }

System Programming Essentials ©2025 M. Kerrisk Signals 5-24 §5.4

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Notes for online practical sessions

Small groups in breakout rooms

Write a note into Slack if you have a preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room

I will circulate regularly between rooms to answer questions

Zoom has an “Ask for help” button...

Keep an eye on the #general Slack channel

Perhaps with further info about exercise;

Or a note that the exercise merges into a break

When your room has finished, write a message in the Slack
channel: “***** Room X has finished *****”

Then I have an idea of how many people have finished

System Programming Essentials ©2025 M. Kerrisk Signals 5-26 §5.5

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”

Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can

Turn on line numbering in your editor
In vim use: :set number

In emacs use: M-x display-line-numbers-mode <RETURN>
M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim use: :set nornu

In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

System Programming Essentials ©2025 M. Kerrisk Signals 5-27 §5.5

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

Enter the command tmate in an X-term, and you’ll see the following:

$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via Slack or another channel

Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type

Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

System Programming Essentials ©2025 M. Kerrisk Signals 5-28 §5.5

Exercise

While a signal handler is executing, the signal that caused it
to be invoked is (by default) temporarily added to the signal
mask, so that it is blocked from further delivery until the
signal handler returns. Consequently, execution of a signal
handler can’t be interrupted by a further execution of the
same handler. To demonstrate that this is so, modify the
signal handler in the signals/ouch_sigaction.c program
to include the following after the existing printf() statement:

sleep(5);
printf("Bye\n");

Build and run the program, type control-C once, and then,
while the signal handler is executing, type control-C three
more times. What happens? In total, how many times is the
signal handler called?

System Programming Essentials ©2025 M. Kerrisk Signals 5-29 §5.5

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Signal sets

Various signal-related APIs work with signal sets

Signal set == data structure that represents multiple signals

Data type: sigset_t

Typically a bit mask, but not necessarily

[TLPI §20.9]

System Programming Essentials ©2025 M. Kerrisk Signals 5-31 §5.6

Manipulating signal sets

#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int sig);
int sigdelset(sigset_t *set, int sig);
int sigismember(const sigset_t *set, int sig);

sigemptyset() initializes set to contain no signals

sigfillset() initializes set to contain all signals

We must initialize set using sigemptyset() or sigfillset()
before employing macros below

Using memset() to zero a signal set is not correct

sigaddset() adds sig to set

sigdelset() removes sig from set

sigismember() returns 1 if sig is in set, 0 if it is not, or –1 on
error (e.g., sig is invalid)

System Programming Essentials ©2025 M. Kerrisk Signals 5-32 §5.6

Blocking signals (the signal mask)

Each process has a signal mask–a set of signals whose
delivery is currently blocked

(In truth: each thread has a signal mask...)

If a blocked signal is generated, it remains pending until
removed from signal mask

The signal mask can be changed in various ways:

While handler is invoked, the signal that triggered the
handler is (temporarily) added to signal mask

While handler is invoked, any signals specified in sa_mask
are (temporarily) added to signal mask

Explicitly, using sigprocmask()

Attempts to block SIGKILL/SIGSTOP are silently ignored

[TLPI §20.10]

System Programming Essentials ©2025 M. Kerrisk Signals 5-33 §5.6

sigprocmask()

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

Adds signals to, or removes signals from, caller’s signal mask

(Typical use: prevent interruption by signal handler while
updating a shared data structure)

how specifies change to signal mask:
SIG_BLOCK: add signals in set to signal mask

I.e., union with existing signal mask

SIG_UNBLOCK: remove signals in set from signal mask

SIG_SETMASK: assign set to signal mask

I.e., overwrite existing signal mask

[TLPI §20.10]

System Programming Essentials ©2025 M. Kerrisk Signals 5-34 §5.6

sigprocmask()

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

oldset returns previous signal mask

Can be NULL if we don’t care

sigprocmask(how, NULL, &oldset) retrieves current
mask without changing it

how is ignored

[TLPI §20.10]

System Programming Essentials ©2025 M. Kerrisk Signals 5-35 §5.6

Example: temporarily blocking a signal

The following code snippet shows how to temporarily block
a signal (SIGINT) while executing a block of code

sigset_t blocking, prev;

sigemptyset(&blocking);
sigaddset(&blocking, SIGINT);
sigprocmask(SIG_BLOCK, &blocking, &prev);

/* ... Code to execute with SIGINT blocked ... */

sigprocmask(SIG_SETMASK, &prev, NULL);

We might do this because main program wants to operate
on global variables that signal handle would also access

System Programming Essentials ©2025 M. Kerrisk Signals 5-36 §5.6

Pending signals

#include <signal.h>
int sigpending(sigset_t *set);

Between generation and delivery, a signal is pending

Pending state is normally unobservable unless signal is
explicitly blocked

sigpending() returns (in set) the set of signals currently
pending for caller

We do not need to initialize set before calling sigpending()

Can examine set using sigismember() :

sigset_t pending;
sigpending(&pending);
if (sigismember(&pending, SIGINT))

printf("SIGINT (%s) is pending\n", strsignal(SIGINT));

[TLPI §20.11]

System Programming Essentials ©2025 M. Kerrisk Signals 5-37 §5.6

Signals are not queued

The set of pending (standard) signals is a mask

⇒ If same signal is generated multiple times while blocked,
it will be delivered just once

System Programming Essentials ©2025 M. Kerrisk Signals 5-38 §5.6

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

API summary

int sigaction(int sig, const struct sigaction *act, struct sigaction *oldact);
// Change disposition of 'sig' to 'act'; returning previous
// disposition in 'oldact'

struct sigaction {
void (*sa_handler)(int); // Handler address or DIG_IGN or SIG_DFL
sigset_t sa_mask; // Signals to be blocked while handler runs
int sa_flags;
...

};

char *strsignal(int sig); // Return string describing a signal
int pause(void); // Pause until interrupted by signal handler

// Following are for manipulating signal sets (sigset_t):
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int sig);
int sigdelset(sigset_t *set, int sig);
int sigismember(const sigset_t *set, int sig);

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
// Modify the signal mask and return previous mask;
// 'how' can be SIG_BLOCK / SIG_UNBLOCK / SIG_SETMASK

int sigpending(sigset_t *set);
// Return set of pending signals in 'set'

System Programming Essentials ©2025 M. Kerrisk Signals 5-40 §5.7

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Exercises

The goal of these exercises is to experiment with signal handlers and the use
of the signal mask to block delivery of signals. A template for both part 1
and part 2 of the exercise is provided ([template:
signals/ex.pending_sig_expt.c])

Hint: don’t confuse the signal mask with the sa_mask field that is
passed to sigaction(). The signal mask is a process attribute maintained
inside the kernel that can be directly modified using calls to sigaction(). The
sa_mask field specifies additional signals that should be temporarily added
to the signal mask while a signal handler is executing.

1 Write a program that:

Blocks all signals except SIGINT. This will require the use of
sigprocmask() (slides 5-35 + 5-36) as well as the APIs for
manipulating signal sets (slide 5-32).

Uses sigaction() (slides 5-13, 5-14, and 5-24) to establish a
SIGINT handler that does nothing but return.

Calls pause() to wait for a signal.

System Programming Essentials ©2025 M. Kerrisk Signals 5-42 §5.8

Exercises

After pause() returns:

determines the set of pending signals for the process (use
sigpending(), slide 5-37);

tests which signals are in that set (use sigismember(),
iterating through all signals in the range 1 <= s < NSIG;
see slide 5-18);

and prints the descriptions of those signals (strsignal()).

Run the program and send it various signals (other than SIGINT and
signals that are ignored by default), using either the kill command from
another terminal (kill -<sig> <pid>), or by typing
signal-generating keys from the terminal where you run the program
(Control-Z for SIGTSTP, Control-\(or Control-4) for SIGQUIT). Then
type Control-C to generate SIGINT and inspect the list of pending
signals displayed by the program.

[Exercises continue on following slide]

System Programming Essentials ©2025 M. Kerrisk Signals 5-43 §5.8

Exercises

2 Extend the program created in the preceding exercise so that:

Just after installing the handler for SIGINT, the program also
installs a handler for SIGQUIT (generated when the Control-\ key
is pressed). The handler should print a message “SIGQUIT
received”, and return.

After displaying the list of pending signals, the program unblocks
SIGQUIT and calls pause() once more. (" Which how value
should be given to sigprocmask() ?)

While the program is blocking signals (i.e., before typing Control-C),
try typing Control-\ multiple times. After Control-C is typed, how
many times does the SIGQUIT handler display its message? Why?

3 If you run the program once more, and then from another terminal
send the SIGKILL signal to the program (kill -KILL <pid>), what
happens? Why?

System Programming Essentials ©2025 M. Kerrisk Signals 5-44 §5.8

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Homework exercises

1 Suppose that a program has blocked a certain signal, and
that signal has been generated and is pending for the
process. What do you suppose will happen if the program
changes the disposition of the signal to “ignore” (SIG_IGN)?
Will the signal still be pending? Write a test program to
verify your answer.

System Programming Essentials ©2025 M. Kerrisk Signals 5-46 §5.9

Outline

5 Signals 5-1
5.1 Overview of signals 5-3
5.2 Signal dispositions 5-8
5.3 Useful signal-related functions 5-16
5.4 Signal handlers 5-21
5.5 Exercises 5-25
5.6 Signal sets, the signal mask, and pending signals 5-30
5.7 API summary 5-39
5.8 Exercises 5-41
5.9 Homework exercises 5-45
5.10 Designing signal handlers 5-47

Designing signal handlers

Signal handlers can, in theory, do anything

But, complex signal handlers can easily have subtle bugs
(e.g., race conditions)

E.g., if main program and signal handler access same global
variables

" Read signal-safety(7) manual page!

⇒ Design signal handlers to be as simple as possible

System Programming Essentials ©2025 M. Kerrisk Signals 5-48 §5.10

Designing signal handlers

Some simple signal-handler designs:
Set a global flag and return

Main program periodically checks (and clears) flag, and
takes appropriate action

(See the discussion of sig_atomic_t in TLPI §21.1.3)

Signal handler does some clean-up and terminates process

(TLPI §21.2)

Signal handler performs a nonlocal goto to unwind stack

sigsetjmp() and siglongjmp() (TLPI §21.2.1)

E.g., some shells do this when handling signals

System Programming Essentials ©2025 M. Kerrisk Signals 5-49 §5.10

Signals are not queued

Signals are not queued

A blocked signal is marked just once as pending, even if
generated multiple times

⇒ One signal may correspond to multiple “events”

Must design programs that handle signals to allow for this

Example:

SIGCHLD is generated for parent when child terminates

While SIGCHLD handler executes, SIGCHLD is blocked

Suppose two more children terminate while handler
executes

Only one SIGCHLD signal will be queued

Solution: SIGCHLD handler should loop, checking if multiple
children have terminated

System Programming Essentials ©2025 M. Kerrisk Signals 5-50 §5.10

This page intentionally blank

This page intentionally blank

Linux System Programming Essentials

Process Lifecycle

Michael Kerrisk, man7.org © 2025

July 2025

mtk@man7.org

Outline Rev: # d6f57652b7eb

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Creating processes and executing programs

Four key system calls (and their variants):

fork() : create a new (“child”) process

exit() : terminate calling process

wait() : wait for a child process to terminate

execve() : execute a new program in calling process

[TLPI §24.1]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-4 §6.1

Using fork(), execve(), wait(), and exit() together

Parent process

running program A

fork()

Parent may perform

other actions here

wait(&wstatus)

Execution of

parent blocks

Child process

running program A

execve(B, ...)

Child process

running program B

exit(status)

Memory of parentcopied to child

Kernel unblocks parent

and delivers SIGCHLD

Child status
passed to parent

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-5 §6.1

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Creating a new process: fork()

#include <unistd.h>
pid_t fork(void);

fork() creates a new process (“the child”)

Child is a near exact duplicate of caller (“the parent”)

Notionally, memory of parent is duplicated to create child
In practice, copy-on-write duplication is used

⇒ Only page tables must be duplicated at time of fork()

Two processes share same (read-only) text segment

Two processes have separate copies of stack, data, and heap
segments

⇒ Each process can modify variables without affecting
other process

[TLPI §24.2]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-7 §6.2

Return value from fork()

#include <unistd.h>
pid_t fork(void);

Both processes continue execution by returning from fork()

fork() returns different values in parent and child:
Parent:

On success: PID of new child (allows parent to track child)

On failure: –1

Child: returns 0

Child can obtain its own PID using getpid()

Child can obtain PID of parent using getppid()

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-8 §6.2

Using fork()

Common idioms for using fork():

pid_t pid = fork();

if (pid == -1) {
/* Handle error */

} else if (pid == 0) {
/* Code executed by child */

} else {
/* Code executed by parent */

}

pid_t pid = fork();

switch (pid) {
case -1:

/* Handle error */
case 0:

/* Code executed by child */
default:

/* Code executed by parent */
}

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-9 §6.2

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Exercise

1 Write a program that uses fork() to create a child process
([template: procexec/ex.fork_var_test.c]). After the fork() call,
both the parent and child should display their PIDs (getpid()). Include
code to demonstrate that the child process created by fork() can
modify its copy of a local variable in main() without affecting the value
in the parent’s copy of the variable.

Note: you may find it useful to use the sleep(num-secs) library
function to delay execution of the parent for a few seconds, to ensure
that the child has a chance to execute before the parent inspects its
copy of the variable.

2 Processes have many attributes. When a new process is created using
fork(), which of those attributes are inherited by the child and which
are not (e.g., are reset to some default)? Here, we explore whether two
process attributes–signal dispositions and alarm timers–are inherited by
a child process.

[Exercise continues on the next slide]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-11 §6.3

Exercise

Write a program ([template: procexec/ex.inherit_alarm.c]) that
performs the following steps in order to determine if a child process
inherits signal dispositions and alarm timers from the parent:

Establishes a SIGALRM handler that prints the process’s PID.

Starts an alarm timer that expires after two seconds. Do this
using the call alarm(2). When the timer expires, it will notify by
sending a SIGALRM signal to the process.

Creates a child process using fork().

After the fork(), the child fetches the disposition of the SIGALRM

signal (sigaction()) and tests whether the sa_handler field in the
returned structure is the address of the signal handler

Both processes then loop 5 times, sleeping for half a second (use
usleep()) and displaying the process PID. Which of the processes
receives a SIGALRM signal?

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-12 §6.3

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Terminating a process

A process can terminate itself using two APIs:

_exit(2) (system call)

exit(3) (library function)

[TLPI §25.1]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-14 §6.4

Terminating a process with _exit(2)

#include <unistd.h>
void _exit(int status);

_exit() terminates the calling process

AKA normal termination

abnormal termination == killed by a signal

(In truth: on Linux, _exit() is a wrapper for Linux-specific exit_group(2),

which terminates all threads in a process)

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-15 §6.4

Process exit status

#include <unistd.h>
void _exit(int status);

Least significant 8 bits of status define exit status

Remaining bits ignored

0 == success

nonzero == failure

POSIX specifies two constants:

#define EXIT_SUCCESS 0
#define EXIT_FAILURE 1

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-16 §6.4

Terminating a process with exit(3)

Most programs employ exit(3), rather than _exit(2)

#include <stdlib.h>
void exit(int status);

The exit(3) library function:
Calls exit handlers registered by process (TLPI §25.3)

Exit handler == callback function automatically called at
normal process termination

atexit(3), on_exit(3)

Flushes stdio buffers

Calls: _exit(status)

(If we call _exit() directly, then exit handlers are not called
and stdio buffers are not flushed)

return n inside main() is equivalent to exit(n)

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-17 §6.4

Process teardown

As part of process termination (normal or abnormal), the kernel
performs various clean-ups:

All open file descriptors are closed

Associated file locks are released

Open POSIX IPC objects are closed (message queues,
semaphores, shared memory)

Memory mappings are unmapped

Memory locks are removed

System V shared memory segments are detached

And more...

[TLPI §25.2]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-18 §6.4

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Overview

Parent processes can use the “wait” family of APIs to
monitor state change events in child processes:

Termination

Stop (because of a signal)

Continue (after SIGCONT signal)

Parent can obtain various info about state changes:

Exit status of process

What signal stopped or killed process

Whether process produced a core dump before terminating

For historical reasons, there are multiple “wait” functions

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-20 §6.5

Waiting for children with waitpid()

#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *wstatus, int options);

waitpid() waits for a child process to change state

No child has changed state ⇒ call blocks

Child has already changed state ⇒ call returns immediately

wstatus argument returns wait status value that describes
child state transition

wstatus can be NULL, if we don’t need this info

(More details later)

Return value:

On success: PID of child whose status is being reported

On error, –1
No more children? ⇒ errno set to ECHILD

[TLPI §26.1.2]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-21 §6.5

Waiting for children with waitpid()

#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *wstatus, int options);

pid specifies which child(ren) to wait for:

pid == –1 : any child of caller

pid > 0 : child whose PID equals pid

(plus other possibilities, as documented in manual page)

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-22 §6.5

Waiting for children with waitpid()

#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *wstatus, int options);

By default, waitpid() reports only terminated children

The options bit mask can specify additional state changes to
report:

WUNTRACED: report stopped children

WCONTINUED: report stopped children that have continued

Specifying WNOHANG in options causes nonblocking wait

If no children have changed state, waitpid() returns
immediately, with return value of 0

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-23 §6.5

waitpid() example

Wait for all children to terminate, and report their PIDs:

for (;;) {
childPid = waitpid(-1, NULL, 0);
if (childPid == -1) {

if (errno == ECHILD) {
printf("No more children!\n");
break;

} else { /* Unexpected error */
errExit("waitpid");

}
}

printf("waitpid() returned PID %ld\n", (long) childPid);
}

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-24 §6.5

The wait status value

wstatus distinguishes 4 types of event:

Child terminated via _exit(), specifying an exit status

Child was killed by a signal

Child was stopped by a signal

Child was continued by a signal

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-25 §6.5

The wait status value

16 lowest bits of wstatus returned by waitpid() encode status in
such a way that the 4 cases can be distinguished:

(Encoding is an implementation detail we don’t really need to care about)

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-26 §6.5

Dissecting the wait status

<sys/wait.h> defines macros for dissecting a wait status

Only one of the headline macros in this list will return true:
1 WIFEXITED(wstatus): true if child exited normally

WEXITSTATUS(wstatus) returns exit status of child

2 WIFSIGNALED(wstatus): true if child was killed by signal

WTERMSIG(wstatus) returns number of killing signal

WCOREDUMP(wstatus) returns true if child dumped core

3 WIFSTOPPED(wstatus): true if child was stopped by signal

WSTOPSIG(wstatus) returns number of stopping signal

4 WIFCONTINUED(wstatus): true if child was resumed by
SIGCONT

The subordinate macros may be used only if the
corresponding headline macro tests true

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-27 §6.5

Example: procexec/print_wait_status.c

Display wait status value in human-readable form

void printWaitStatus(const char *msg, int status) {
if (msg != NULL)

printf("%s", msg);

if (WIFEXITED(status)) {
printf("child exited, status=%d\n", WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {
printf("child killed by signal %d (%s)",

WTERMSIG(status), strsignal(WTERMSIG(status)));
if (WCOREDUMP(status))

printf(" (core dumped)");
printf("\n");

} else if (WIFSTOPPED(status)) {
printf("child stopped by signal %d (%s)\n",

WSTOPSIG(status), strsignal(WSTOPSIG(status)));

} else if (WIFCONTINUED(status))
printf("child continued\n");

}

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-28 §6.5

An older wait API: wait()

#include <sys/wait.h>
pid_t wait(int *wstatus);

The original “wait” API

wait(&wstatus) == waitpid(-1, &wstatus, 0)

Still commonly used to handle the simple, common case:
wait for any child to terminate

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-29 §6.5

An newer wait API: waitid()

#include <sys/wait.h>
int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

Similar to waitpid(), but provides additional functionality,
including:

Independently choose which events (termination /
stopped / continued) to wait on

waitpid() always waits for at least termination events

Wait via PID file descriptor

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-30 §6.5

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Orphans

An orphan is a process that lives longer than its parent

Orphaned processes are adopted by init

init waits for its adopted children when they terminate

After orphan is adopted, getppid() returns PID of init

Conventionally, init has PID 1

On systems where the init system is systemd, then,
depending on the configuration, things are different:

A helper process (PID != 1) becomes parent of orphaned
children

When run with the --user option, systemd organizes all
processes in the user’s session into a subtree with such a
subreaper

See discussion of PR_SET_CHILD_SUBREAPER in prctl(2)

[TLPI §26.2]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-32 §6.6

Zombies

Suppose a child terminates before parent waits for it

Parent must still be able to collect status later

⇒ Child becomes a zombie:

Most process resources are recycled

A process slot is retained

PID, status, and resource usage statistics

Zombie is removed when parent does a “wait”

[TLPI §26.2]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-33 §6.6

Creating a zombie: procexec/zombie.c

Usage: zombie [num-zombies [sleep-secs]]

1 int main(int argc, char *argv[]) {
2 int nzombies = (argc > 1) ? atoi(argv[1]) : 1;
3 int sleepSecs = (argc > 2) ? atoi(argv[2]) : 0;
4 printf("Parent (PID %ld)\n", (long) getpid());
5
6 for (int j = 0; j < nzombies; j++) {
7 switch (fork()) {
8 case -1:
9 errExit("fork-%d", j);

10 case 0: /* Child: exits to become zombie */
11 printf("Child (PID %ld) exiting\n", (long) getpid());
12 if (sleepSecs > 0);
13 sleep(sleepSecs);
14 exit(EXIT_SUCCESS);
15 default: /* Parent continues in loop */
16 break;
17 }
18 }
19 sleep(3600); /* Children are zombies during this time */
20 while (wait(NULL) > 0) /* Reap zombie children */
21 continue;
22 exit(EXIT_SUCCESS);
23 }

Create one or more zombie child processes

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-34 §6.6

Creating a zombie: procexec/zombie.c

1 $./zombie &
2 [1] 23425
3 Parent (PID 23425)
4 Child (PID 23427) exiting
5 $ ps -C zombie
6 PID TTY TIME CMD
7 23425 pts/1 00:00:00 zombie
8 23427 pts/1 00:00:00 zombie <defunct>
9 $ kill -KILL 23427

10 $ ps -C zombie
11 PID TTY TIME CMD
12 23425 pts/1 00:00:00 zombie
13 23427 pts/1 00:00:00 zombie <defunct>

Zombies can’t be killed by signals!

(Since parent must still be able to “wait”)

Even silver bullets (SIGKILL) don’t work

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-35 §6.6

Reap your zombies

Zombie may live for ever, if parent fails to “wait” on it

Or until parent is killed, so zombie is adopted by init

Long-lived processes that create children must ensure
that zombies are “reaped” (“waited” for)

Shells, network servers, ...

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-36 §6.6

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

API summary

pid_t fork(void); // Create a child process; returns
// PID of child in parent, and 0 in child

void _exit(int status); // Terminate process
void exit(int status); // Call exit handlers, flush stdio, and

// terminate process

// Wait for (and return PID of) a child process:
pid_t waitpid(pid_t pid, int *wstatus, int options);
pid_t wait(int *wstatus);

// Setting up handler for SIGCHLD:
struct sigaction sa;
sa.sa_handler = func; // Address of signal handler
sa.sa_flags = 0; // Or possibly SA_RESTART
sigemptyset(&sa.sa_mask); // Assuming we don't need to block any other

// signals while handler runs
sigaction(SIGCHLD, &sa, NULL);

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-38 §6.7

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Exercise

1 Suppose that we have three processes related as grandparent (A),
parent (B), and child (C), and that the parent exits after a few
seconds, but the grandparent does not immediately perform a wait()
after the parent exits, with the result that the parent becomes a
zombie, as in the following diagram.

A

fork()

B

fork()

sleep(3)

exit() 1

C
sleep(6)

waitpid(B) 2

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-40 §6.8

Exercise

When do you expect the child (C) to be adopted by init (so that getppid() in the
child returns 1): after the parent (B) terminates or after the grandparent (A) does
a wait() ? In other words, is the child adopted at point 1 or point 2 in the diagram?
Write a program, [(minimal) template: procexec/ex.zombie_parent.c], to verify
the answer.

Note the following points:

For a reminder of the usage of fork(), see slide 6-9.

You will need to use to sleep() in various parts of the program:

The child (C) could loop 10 times, displaying the value returned by
getppid() and sleeping for 1 second on each loop iteration.

The parent (B) sleeps for 3 seconds before terminating.

The grandparent (A) sleeps for 6 seconds before calling waitpid() on
the PID of the parent (B).

Depending on your distribution (e.g., if you have a systemd-based system
where the --user flag is employed), you may find that the orphaned child is
reparented to a process other than PID 1. Find out what program is running
in that process, by using the command ps <pid>.

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-41 §6.8

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

The SIGCHLD signal

SIGCHLD is generated for a parent when a child terminates

Ignored by default

Catching SIGCHLD allows us to be asynchronously notified of
child’s termination

Can be more convenient than synchronous or nonblocking
waitpid() calls

Within SIGCHLD handler, we “wait” to reap zombie child

[TLPI §26.3]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-43 §6.9

A SIGCHLD handler

void grimReaper(int sig) {
int savedErrno = errno;
while (waitpid(-1, NULL, WNOHANG) > 0)

continue;
errno = savedErrno;

}

Each waitpid() call reaps one terminated child

while loop handles possibility that multiple children terminated
while SIGCHLD was blocked

e.g., during earlier invocation of handler

WNOHANG: don’t block if there are no more terminated children

Loop terminates when waitpid() returns:

0, meaning no more terminated children

–1, probably with errno == ECHILD, meaning no more children

Save and restore errno, so that handler is reentrant (TLPI p427)

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-44 §6.9

SIGCHLD for stopped and continued children

SIGCHLD is also generated when a child stops or continues

To prevent this, specify SA_NOCLDSTOP in sa_flags when
establishing SIGCHLD handler with sigaction()

[TLPI §26.3.2]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-45 §6.9

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Executing a new program

execve() loads a new program into calling process’s memory

Old program, stack, data, and heap are discarded

After executing run-time start-up code, execution
commences in new program’s main()

Various functions layered on top of execve() :

Provide variations on functionality of execve()

Collectively termed “exec()”

See exec(3) manual page

[TLPI §27.1]

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-47 §6.10

Executing a new program with execve()

#include <unistd.h>
int execve(const char *pathname, char *const argv[],

char *const envp[]);

execve() loads program at pathname into caller’s memory

pathname is an absolute or relative pathname

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-48 §6.10

Executing a new program with execve()

#include <unistd.h>
int execve(const char *pathname, char *const argv[],

char *const envp[]);

argv specifies command-line arguments for new program

Defines argv argument for main() in new program

NULL-terminated array of pointers to strings

argv[0] is command name

Typically, same as (basename part of) pathname

Program can vary its behavior, depending on value of
argv[0] (e.g., busybox)

See example programs

procexec/launch_shell.c (“-” in argv[0][0] when
execing a shell triggers “login shell” behavior)

procexec/execve_argv_expt.c

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-49 §6.10

Executing a new program with execve()

#include <unistd.h>
int execve(const char *pathname, char *const argv[],

char *const envp[]);

envp specifies environment list for new program

Defines environ in new program

NULL-terminated array of pointers to strings

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-50 §6.10

Executing a new program with execve()

#include <unistd.h>
int execve(const char *pathname, char *const argv[],

char *const envp[]);

Successful execve() does not return

If execve() returns, it failed; no need to check return value:

execve(pathname, argv, envp);
perror("execve");
exit(EXIT_FAILURE);

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-51 §6.10

Example: procexec/exec_status.c

./exec_status command [args...]

Create a child process

Child executes command with supplied command-line
arguments

Parent waits for child to terminate, and reports wait status

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-52 §6.10

Example: procexec/exec_status.c

1 extern char **environ;
2 int main(int argc, char *argv[]) {
3 pid_t childPid, wpid;
4 int wstatus;
5 ...
6 switch (childPid = fork()) {
7 case -1: errExit("fork");
8
9 case 0: /* Child */

10 printf("PID of child: %ld\n", (long) getpid());
11 char **nextArgv = &argv[1]; // argv for next program
12 char *progName = nextArgv[0];
13 execve(progName, nextArgv, environ);
14 errExit("execve");
15
16 default: /* Parent */
17 wpid = waitpid(childPid, &wstatus, 0);
18 if (wpid == -1) errExit("waitpid");
19 printf("Wait returned PID %ld\n", (long) wpid);
20 printWaitStatus(" ", wstatus);
21 }
22 exit(EXIT_SUCCESS);
23 }

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-53 §6.10

Example: procexec/exec_status.c

1 $./exec_status /bin/date
2 PID of child: 4703
3 Thu Oct 24 13:48:44 NZDT 2013
4 Wait returned PID 4703
5 child exited, status=0
6 $./exec_status /bin/sleep 60 &
7 [1] 4771
8 PID of child: 4773
9 $ kill 4773

10 Wait returned PID 4773
11 child killed by signal 15 (Terminated)
12 [1]+ Done ./exec_status /bin/sleep 60

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-54 §6.10

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

Exercise

1 Write a simple shell program. The program should loop, continuously reading shell
commands from standard input. Each input line consists of a set of white-space
delimited words that are a command and its arguments. Each command should be
executed in a new child process (fork()) using execve(). The parent process (the
“shell”) should wait on each child and display its wait status (you can use the
supplied printWaitStatus() function). [template: procexec/ex.simple_shell.c]

Some hints:

The space-delimited words in the input line need to be broken down into a
set of null-terminated strings pointed to by an argv-style array, and that array
must end with a NULL pointer. The strtok(3) library function simplifies this
task. (This task is already performed by code in the template.)

Because execve() is used, you will need to type the full pathname when
entering commands to your shell

As a first test of you shell, try executing the following program (which is in the
same directory):

./show_argv a b c

Fun facts: the source code of bash is around 180k lines (dash is around 20k lines)

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-56 §6.11

Exercise

2 Write a program, ([template: procexec/ex.exec_self_pid.c]) that verifies that
an exec does not change a process’s PID.

The program should perform the following steps:

Print the process’s PID.

If argc is 2, the program exits.

Otherwise, the program uses execl() to re-execute itself with an
additional command-line argument (any string), so that argc will be 2.

Test the program by running it with no arguments (i.e., argc is 1).

3 Write a program ([template: procexec/ex.make_link.c]) that takes 2 arguments:

make_link target linkpath

If invoked with the name slink, it creates a symbolic link (symlink()) using these
pathnames, otherwise it creates a hard link (link()). After compiling, create two
hard links to the executable, with the names hlink and slink. Verify that when run
with the name hlink, the program creates hard links, while when run with the name
slink, it creates symbolic links.
Hint:

You will find the basename() and strcmp() functions useful when inspecting
the program name in argv[0].

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-57 §6.11

Outline

6 Process Lifecycle 6-1
6.1 Introduction 6-3
6.2 Creating a new process: fork() 6-6
6.3 Exercises 6-10
6.4 Process termination 6-13
6.5 Monitoring child processes 6-19
6.6 Orphans and zombies 6-31
6.7 API summary 6-37
6.8 Exercises 6-39
6.9 The SIGCHLD signal 6-42
6.10 Executing programs: execve() 6-46
6.11 Exercises 6-55
6.12 The exec() library functions 6-58

The exec() library functions

#include <unistd.h>
int execle(const char *pathname, const char *arg, ...

/* , (char *) NULL, char *const envp[] */);
int execlp(const char *filename, const char *arg, ...

/* , (char *) NULL */);
int execvp(const char *filename, char *const argv[]);
int execv(const char *pathname, char *const argv[]);
int execl(const char *pathname, const char *arg, ...

/* , (char *) NULL */);
int execvpe(const char *filename, const *char argv[],

char *const envp[]);

Variations on theme of execve()

Like execve(), the exec() functions return only if they fail

execvpe() is Linux-specific (define _GNU_SOURCE)

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-59 §6.12

The exec() library functions

Vary theme of execve() with 2 choices in each of 3 dimensions:

How are command-line arguments of new program specified?

How is the executable specified?

How is environment of new program specified?

Final letters in name of each function indicate behavior

Function Specification
of arguments
(v, l)

Specification
of executable
file (-, p)

Source of
environment
(e, -)

execve() array pathname envp argument
execle() list pathname envp argument
execlp() list filename + PATH caller’s environ
execvp() array filename + PATH caller’s environ
execv() array pathname caller’s environ
execl() list pathname caller’s environ
execvpe() array filename + PATH envp argument

System Programming Essentials ©2025 M. Kerrisk Process Lifecycle 6-60 §6.12

Linux System Programming Essentials

System Call Tracing with strace

Michael Kerrisk, man7.org © 2025

July 2025

mtk@man7.org

Outline Rev: # d6f57652b7eb

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29

Outline

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29

strace(1)

A tool to trace system calls made by a user-space process

Implemented via ptrace(2)

https://strace.io/

Or: a debugging tool for tracing complete conversation
between application and kernel

Application source code is not required

Answer questions like:

What system calls are employed by application?

Which files does application touch?

What arguments are being passed to each system call?

Which system calls are failing, and why (errno)?

See also the loosely related ltrace(1) command

Trace function calls in shared libraries (e.g., libc)

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-4 §7.1

strace(1)

Trace information is provided in symbolic form

System call names are shown

We see signal names (not numbers)

Strings printed as characters (up to 32 bytes, by default)

Bit-mask arguments displayed symbolically, using
corresponding bit flag names ORed together

Structures displayed with labeled fields

“Large” arguments are abbreviated by default

Use strace –v (verbose) to see unabbreviated arguments

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-5 §7.1

strace(1)

fstat(3, {st_dev=makedev(0x8, 0x5), st_ino=407279,
st_mode=S_IFREG|0755, st_nlink=1, st_uid=0, st_gid=0,
st_blksize=4096, st_blocks=80, st_size=36960, st_atime=1625615479
/* 2021-07-07T01:51:19.795021222+0200 */, st_atime_nsec=795021222,
st_mtime=1613345143 /* 2021-02-15T00:25:43+0100 */, st_mtime_nsec=0,
st_ctime=1616161103 /* 2021-03-19T14:38:23.816838407+0100 */,
st_ctime_nsec=816838407}) = 0

open("/lib64/liblzma.so.5", O_RDONLY|O_CLOEXEC) = 3

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or
directory)

For each system call, we see:

Name of system call

Values passed in/returned via arguments

System call return value

Symbolic errno value (+ explanatory text) on syscall failures

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-6 §7.1

Simple usage: tracing a command at the command line

A very simple C program:

int main(int argc, char *argv[]) {
#define STR "Hello world\n"

write(STDOUT_FILENO, STR, strlen(STR));
exit(EXIT_SUCCESS);

}

Run strace(1), directing logging output (–o) to a file:

$ strace -o strace.log ./hello_world
Hello world

(By default, trace output goes to standard error)

" On some systems, may first need to to ensure
ptrace_scope file has value 0 or 1:

$ sudo sh -c 'echo 0 > /proc/sys/kernel/yama/ptrace_scope'

Yama LSM disables ptrace(2) to prevent attack escalation;
see ptrace(2) manual page

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-7 §7.1

Simple usage: tracing a command at the command line

$ cat strace.log
execve("./hello_world", ["./hello_world"], [/* 110 vars */]) = 0
...
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=160311, ...}) = 0
mmap(NULL, 160311, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fa5ecfc0000
close(3) = 0
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
...
write(1, "Hello world\n", 12) = 12
exit_group(0) = ?
+++ exited with 0 +++

Even simple programs make lots of system calls!

25 in this case (many have been edited from above output)

Most output in this trace relates to finding and loading
shared libraries

First call (execve()) was used by shell to load our program

Only last two system calls were made by our program

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-8 §7.1

A gotcha...

The last call in our program was:

exit(EXIT_SUCCESS);

But strace showed us:

exit_group(0) = ?

Some detective work:
We “know” exit(3) is a library function that calls _exit(2)

But where did exit_group() come from?

_exit(2) manual page tells us:

$ man 2 _exit
...
C library/kernel differences
In glibc up to version 2.3, the _exit() wrapper function
invoked the kernel system call of the same name. Since
glibc 2.3, the wrapper function invokes exit_group(2),
in order to terminate all of the threads in a process.

⇒ may need to dig deeper to understand strace(1) output

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-9 §7.1

Tracing live processes

–p PID : trace running process with specified PID

Type Control-C to cease tracing

To trace multiple processes, specify –p multiple times

Can trace only processes you own

(And a process can have only one tracer)

"" tracing a process can heavily affect performance

E.g., up to two orders of magnitude slow-down in syscalls

" Think twice before using in a production environment

–p PID –f : will trace all threads in specified process

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-10 §7.1

Outline

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29

Tracing child processes

By default, strace does not trace children of traced process

–f option causes children to be traced

Each trace line is prefixed by PID

In a program that employs POSIX threads, each line shows
kernel thread ID (gettid())

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-12 §7.2

Tracing child processes: strace/fork_exec.c

1 int main(int argc, char *argv[]) {
2 pid_t childPid;
3 char *newEnv[] = {"ONE=1", "TWO=2", NULL};
4
5 printf("PID of parent: %ld\n", (long) getpid());
6 childPid = fork();
7 if (childPid == 0) { /* Child */
8 printf("PID of child: %ld\n", (long) getpid());
9 if (argc > 1) {

10 execve(argv[1], &argv[1], newEnv);
11 errExit("execve");
12 }
13 exit(EXIT_SUCCESS);
14 }
15 wait(NULL); /* Parent waits for child */
16 exit(EXIT_SUCCESS);
17 }

$ strace -f -o strace.log ./fork_exec
PID of parent: 1939
PID of child: 1940

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-13 §7.2

Tracing child processes: strace/fork_exec.c

$ cat strace.log
1939 execve("./fork_exec", ["./fork_exec"], [/* 110 vars */]) = 0
...
1939 clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,

child_tidptr=0x7fe484b2ea10) = 1940
1939 wait4(-1, <unfinished ...>
1940 write(1, "PID of child: 1940\n", 21) = 21
1940 exit_group(0) = ?
1940 +++ exited with 0 +++
1939 <... wait4 resumed> NULL, 0, NULL) = 1940
1939 --- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=1940,

si_uid=1000, si_status=0, si_utime=0, si_stime=0} ---
1939 exit_group(0) = ?
1939 +++ exited with 0 +++

Each line of trace output is prefixed with corresponding PID

Inside glibc, fork() is actually a wrapper that calls clone(2)

wait() is a wrapper that calls wait4(2)

We see two lines of output for wait4() because call blocks
and then resumes

strace shows us that parent received a SIGCHLD signal

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-14 §7.2

Outline

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29

Exercises

1 Try using strace to trace the execution of a program of your
choice.

2 Some amusements (may require the value 0 in
/proc/sys/kernel/yama/ptrace_scope):

strace -p $$

strace strace -p $$

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-16 §7.3

Outline

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29

Selecting system calls to be traced

strace –e can be used to select system calls to be traced

–e trace=<syscall>[,<syscall>...]

Specify system call(s) that should be traced

Other system calls are ignored

$ strace -o strace.log -e trace=open,close ls

–e trace=!<syscall>[,<syscall>...]
Exclude specified system call(s) from tracing

Some applications do bizarre things (e.g., calling
gettimeofday() 1000s of times/sec.)

" “!” needs to be quoted to avoid shell interpretation

–e trace=/<regexp>
Trace syscalls whose names match regular expression

April 2017; expression will probably need to be quoted...

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-18 §7.4

Selecting system calls by category

–e trace=<syscall-category> trace a category of syscalls

Categories include:
%file : trace all syscalls that take a filename as argument

open(), stat(), truncate(), chmod(), setxattr(), link()...

%desc : trace file-descriptor-related syscalls

read(), write(), open(), close(), fsetxattr(), poll(), select(),
pipe(), fcntl(), epoll_create(), epoll_wait()...

%process : trace process management syscalls

fork(), clone(), exit_group(), execve(), wait4(), unshare()...

%network : trace network-related syscalls

socket(), bind(), listen(), connect(), sendmsg()...

%signal : trace signal-related syscalls

kill(), rt_sigaction(), rt_sigprocmask(), rt_sigqueueinfo()...

%memory : trace memory-mapping-related syscalls

mmap(), mprotect(), mlock()...

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-19 §7.4

Filtering signals

strace –e signal=set

Trace only specified set of signals

“sig” prefix in names is optional; following are equivalent:

$ strace -e signal=sigio,sigint ls > /dev/null
$ strace -e signal=io,int ls > /dev/null

strace –e signal=!set

Exclude specified signals from tracing

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-20 §7.4

Filtering by pathname

strace –P pathname : trace only system calls that access file
at pathname

Specify multiple –P options to trace multiple paths

Example:

$ strace -o strace.log -P /lib64/libc.so.6 ls > /dev/null
Requested path '/lib64/libc.so.6' resolved into '/usr/lib64/libc-2.18.so'

$ cat strace.log
open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p\36\2\0\0\0\0\0"...,

832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2093096, ...}) = 0
mmap(NULL, 3920480, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE,

3, 0) = 0x7f8511fa3000
mmap(0x7f8512356000, 24576, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b3000) = 0x7f8512356000
close(3) = 0
+++ exited with 0 +++

strace noticed that the specified file was opened on FD 3,
and also traced operations on that FD

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-21 §7.4

Mapping file descriptors to pathnames

–y option causes strace to display pathnames corresponding
to each file descriptor

Useful info is also displayed for other types of file
descriptors, such as pipes and sockets

$ strace -y cat greet
...
openat(AT_FDCWD, "greet", O_RDONLY) = 3</home/mtk/greet>
fstat(3</home/mtk/greet>, {st_mode=S_IFREG|0644, ...
read(3</home/mtk/greet>, "hello world\n", 131072) = 12
write(1</dev/pts/11>, "hello world\n", 12) = 12
read(3</home/mtk/greet>, "", 131072) = 0
close(3</home/mtk/greet>) = 0
...

–yy is as for –y but shows additional protocol-specific info
for sockets

write(3<TCP:[10.0.20.135:33522->213.131.240.174:80]>,
"GET / HTTP/1.1\r\nUser-Agent: Wget"..., 135) = 135
read(3<TCP:[10.0.20.135:33522->213.131.240.174:80]>,
"HTTP/1.1 200 OK\r\nDate: Thu, 19 J"..., 253) = 253

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-22 §7.4

Outline

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29

System call tampering

strace can be used to modify behavior of selected syscall(s)

Initial feature implementation completed in early 2017

Various possible effects:

Inject delay before/after syscall

Generate a signal on syscall

Bypass execution of syscall, making it return a “success”
value or fail with specified value in errno (error injection)

(Limited) ability to choose which invocation of syscall will
be modified

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-24 §7.5

strace -e inject options

Syntax: strace -e inject=<syscall-set>[:<option>]...

syscall-set is set of syscalls whose behavior will be modified

:error=errnum : syscall is not executed; returns failure
status with errno set as specified

:retval=value : syscall is not executed; returns specified
“success” value

Can’t specify both :retval and :error together

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-25 §7.5

strace -e inject options

:signal=sig : deliver specified signal on entry to syscall

:delay_enter=usecs , :delay_exit=usecs : delay for usecs
microseconds on entry to/return from syscall

:when=expr : specify which invocation(s) to tamper with

:when=N : tamper with invocation N

:when=N+ : tamper starting at Nth invocation

:when=N+S : tamper with invocation N, and then every S
invocations

Range of N and S is 1..65535

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-26 §7.5

Example

$ strace -y -e close -e inject=close:error=22:when=3 /bin/ls > d
close(3</etc/ld.so.cache>) = 0
close(3</usr/lib64/libselinux.so.1>) = 0
close(3</usr/lib64/libcap.so.2.25>) = -1 EINVAL (Invalid argument) (INJECTED)
close(3</usr/lib64/libcap.so.2.25>) = 0
/bin/ls: error while loading shared libraries: libcap.so.2:
cannot close file descriptor: Invalid argument
+++ exited with 127 +++

Use –y to show pathnames corresponding to file descriptors

Inject error 22 (EINVAL) on third call to close()

Third close() was not executed; an error return was injected

(After that, ls got sad)

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-27 §7.5

Using system call tampering for error injection

Success-injection example: make unlinkat() succeed, without
deleting temporary file that would have been deleted

Error-injection use case: quick and simple black-box testing

Does application fail gracefully when encountering
unexpected error?

But there are alternatives for black-box testing:
Preloaded library with interposing wrapper function that
spoofs a failure (without calling “real” function)

Can be more flexible

But can’t be used with set-UID/set-GID programs

Seccomp (secure computing)

Generalized facility to block execution of system calls based
on system call number and argument values

More powerful, but can’t, for example cause Nth call to fail

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-28 §7.5

Outline

7 System Call Tracing with strace 7-1
7.1 Getting started 7-3
7.2 Tracing child processes 7-11
7.3 Exercises 7-15
7.4 Filtering strace output 7-17
7.5 System call tampering 7-23
7.6 Further strace options 7-29

Obtaining a system call summary

strace –c counts time, calls, and errors for each system call
and reports a summary on program exit

$ strace -c who > /dev/null
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- --------------
21.77 0.000648 9 72 alarm
14.42 0.000429 9 48 rt_sigaction
13.34 0.000397 8 48 fcntl
8.84 0.000263 5 48 read
7.29 0.000217 13 17 2 kill
6.79 0.000202 6 33 1 stat
5.41 0.000161 5 31 mmap
4.44 0.000132 4 31 6 open
2.89 0.000086 3 29 close

...
------ ----------- ----------- --------- --------- --------------
100.00 0.002976 442 13 total

Treat time measurements as indicative only, since strace
adds overhead to each syscall

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-30 §7.6

Further strace options

–k : print a stack trace after each traced syscall

sudo strace –u <username> prog : run program with UID
and GIDs of specified user

Useful when tracing privileged programs, such as
set-UID-root programs

Normally, privileged programs are not run with privilege
when executed under strace

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-31 §7.6

Further strace options

–v : don’t abbreviate arguments (structures, etc.)

Output can be quite verbose...

–s strsize : maximum number of bytes to display for strings

Default is 32 characters

Pathnames are always printed in full

Various options show start time or duration of system calls
–t, –tt : prefix each trace line with wall-clock time

–tt also adds microseconds

–T : show time spent in syscall

But treat as indications only, since strace causes overhead
on syscalls

System Programming Essentials ©2025 M. Kerrisk System Call Tracing with strace 7-32 §7.6

Linux System Programming Essentials

Wrapup

Michael Kerrisk, man7.org © 2025

July 2025

mtk@man7.org

Outline Rev: # d6f57652b7eb

8 Wrapup 8-1
8.1 Wrapup 8-3

Outline

8 Wrapup 8-1
8.1 Wrapup 8-3

Course materials

I’m the (sole) producer of the course book and example
programs

Course materials are continuously revised

Send corrections and suggestions for improvements to
mtk@man7.org

System Programming Essentials ©2025 M. Kerrisk Wrapup 8-4 §8.1

Marketing

Independent trainer, consultant, and writer

Author of The Linux Programming Interface

Reputation / word-of-mouth are important for my business...

Let people know about these courses!
Linux/UNIX system programming

Linux security and isolation APIs
Namespaces, cgroups, seccomp, and capabilities

System programming for Linux containers

Building and using shared libraries

Linux/UNIX network programming

TCP/IP fundamentals

Subsets/combinations of the above; see next slide

Further courses to be announced: http://man7.org/training/

System Programming Essentials ©2025 M. Kerrisk Wrapup 8-5 §8.1

Course overview (see https://man7.org/training)

Linux/UNIX System Programming (LUSP01, 5 days)

System Programming Fundamentals
(SPINTRO01, 2 days)

Threads and IPC Programming
(TIPC01, 3 days)

IPC Programming
(IPC02, 3 days)

POSIX Threads
(PTHR01, 1 day)

System Programming for Linux Containers (SPLC02, 5 days)

Linux Security and Isolation APIs (SECISOL02, 4 days)

Capabilities + Namespaces
(CAPNS01, 2 days)

Seccomp
(SECCOMP01, 1d)

Control Groups
(CGROUPS02, 1d)

System Prog.
Essentials
(SPESS01, 1d)

Linux/UNIX Network
Prog. (NWP03, 3 days)

TCP/IP Fundamentals

(TCPIP01, 1 day)

Linux Shared Libraries
(SHLIB04, 2.5 days)

Nesting indicates a topic that can be taken either as a
separate course or as part of a longer course

Arrows show a suggested prerequisite course

Thanks!

mtk@man7.org @mkerrisk linkedin.com/in/mkerrisk

PGP fingerprint: 4096R/3A35CE5E

http://man7.org/training/

This page intentionally blank

	Course Introduction 1-1
	Course overview 1-3
	Course materials and resources 1-9
	Common abbreviations 1-13
	Introductions 1-15

	Fundamental Concepts 2-1
	Error handling 2-3
	System data types 2-10
	Notes on code examples 2-15

	File I/O 3-1
	File I/O overview 3-3
	open(), read(), write(), and close() 3-8
	API summary 3-20
	Exercises 3-22

	Processes 4-1
	Process IDs 4-3
	Process memory layout 4-6
	Command-line arguments 4-9
	The environment list 4-12
	The /proc filesystem 4-17

	Signals 5-1
	Overview of signals 5-3
	Signal dispositions 5-8
	Useful signal-related functions 5-16
	Signal handlers 5-21
	Exercises 5-25
	Signal sets, the signal mask, and pending signals 5-30
	API summary 5-39
	Exercises 5-41
	Homework exercises 5-45
	Designing signal handlers 5-47

	Process Lifecycle 6-1
	Introduction 6-3
	Creating a new process: fork() 6-6
	Exercises 6-10
	Process termination 6-13
	Monitoring child processes 6-19
	Orphans and zombies 6-31
	API summary 6-37
	Exercises 6-39
	The SIGCHLD signal 6-42
	Executing programs: execve() 6-46
	Exercises 6-55
	The exec() library functions 6-58

	System Call Tracing with strace 7-1
	Getting started 7-3
	Tracing child processes 7-11
	Exercises 7-15
	Filtering strace output 7-17
	System call tampering 7-23
	Further strace options 7-29

	Wrapup 8-1
	Wrapup 8-3

