
Building and Using Shared Libraries on Linux

The Dynamic Linker

Michael Kerrisk, man7.org © 2025

August 2025

mtk@man7.org

Outline Rev: # caf166f4161b

4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

The dynamic linker

Dynamic linker (DL) == run-time linker == loader
Loads shared libraries needed by program and performs
symbol relocations
Is itself a shared library, but special:

Loaded (by kernel) early in execution of a program
Is statically linked (thus, it has no dependencies itself)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-4 §4.1

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

Specifying library search paths in an object

So far, we have two methods of informing the dynamic linker
(DL) of location of a shared library:

LD_LIBRARY_PATH
Installing library in one of the standard directories

Third method: during static linking, we can insert a list of
directories into the executable

A “run-time library path (rpath) list”
At run time, DL will search listed directories to resolve
dynamic dependencies
Useful if libraries will reside in locations that are fixed, but
not in standard list

[TLPI §41.10]
Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-6 §4.2

Defining an rpath list when linking

To embed an rpath list in an executable, use the –rpath
linker option

Multiple –rpath options can be specified ⇒ ordered list
Alternatively, multiple directories can be specified as a
colon-separated list in a single –rpath option

Example:
$ cc -g -Wall -Wl,-rpath,$PWD -o prog prog.c libdemo.so
$ objdump -p prog | grep 'R[UN]*PATH'

RUNPATH /home/mtk/tlpi/code/shlibs/demo
$./prog
Called mod1-x1
Called mod2-x2

Embeds current working directory in rpath list
objdump command allows us to inspect rpath list
Executable now “tells” DL where to find shared library

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-7 §4.2

An rpath improvement: DT_RUNPATH

There are two types of rpath list:
Differ in precedence relative to LD_LIBRARY_PATH
Original (and default) rpath list has higher precedence

DT_RPATH entry in .dynamic ELF section
Original rpath behavior was a design error

User should have full control when using LD_LIBRARY_PATH

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-8 §4.2

An rpath improvement: DT_RUNPATH

Newer rpath type has lower precedence
Gives user possibility to override rpath at runtime using
LD_LIBRARY_PATH usually what we want)
DT_RUNPATH entry in .dynamic ELF section

Supported in DL since 1999
Use: cc –Wl,-rpath,some-dir-path –Wl,--enable-new-dtags

Since binutils 2.24 (2013): inserts only DT_RUNPATH entry
Some distros (e.g., Ubuntu, Fedora) default to
–Wl,--enable-new-dtags
Before binutils 2.24, inserted DT_RUNPATH and DT_RPATH (to
allow for old DLs that didn’t understand DT_RUNPATH)

If both types of rpath list are embedded in an object,
DT_RUNPATH has precedence (i.e., DT_RPATH is ignored)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-9 §4.2

Shared libraries can have rpath lists

Shared libraries can themselves have dependencies
⇒ can use –rpath linker option to embed rpath lists when
building shared libraries

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-10 §4.2

An object’s rpath list is private to the object

Each object (the main program or a shared library) can have
an rpath...
An object’s (DT_RUNPATH) rpath is used for resolving only its
own immediate dependencies

One object’s rpath doesn’t affect search for any other
object’s dependencies

See example in shlibs/rpath_independent

Old style rpath (DT_RPATH) behaves differently!
The DT_RPATH of object A can be used to find libraries
needed by objects in dependency tree of A
See example in shlibs/rpath_dt_rpath

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-11 §4.2

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

Dynamic string tokens

DL understands certain special strings in rpath list
Dynamic string tokens
Written as $NAME or ${NAME}

DL also understands these names in some other contexts
LD_LIBRARY_PATH, LD_PRELOAD, LD_AUDIT
DT_NEEDED (i.e., in dependency lists)

See example in shlibs/dt_needed_dst

dlopen()
See ld.so(8)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-13 §4.3

Dynamic string tokens

$ORIGIN: expands to directory containing program or library
Write turn-key applications!
Installer unpacks tarball containing application with library in
(say) a subdirectory; application can be linked with:
cc -Wl,-rpath,'$ORIGIN/lib'

" " Use quotes to prevent interpretation of $ by shell!

Example: shlibs/shlib_origin_dst

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-14 §4.3

Dynamic string tokens

$ORIGIN is generally ignored in privileged programs
Privileged = set-UID / set-GID / file capabilities
Prevents security vulnerabilities based on creation of hard
links to privileged programs
Exception: $ORIGIN expansion that leads to path in trusted
directory (e.g., /lib64) is permitted

E.g., allows binary in /bin with rpath such as
$ORIGIN/../$LIB/sub

See comments in glibc’s elf/dl-load.c and
https://amir.rachum.com/shared-libraries/

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-15 §4.3

Dynamic string tokens

Other dynamic string tokens:
$LIB: expands to lib or lib64, depending on architecture

E.g., useful on multi-arch platforms to build/supply 32-bit or
64-bit library, as appropriate
On Debian/Ubuntu expands to (on x86 platforms): lib32 or
lib/x86_64-linux-gnu

$PLATFORM: expands to string corresponding to processor
type (e.g., x86_64, i386, i686, aarch64, aarch64_be)

Rpath entry can include arch-specific directory component
E.g., on IA-32, could provide different optimized library
implementations for i386 vs i686

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-16 §4.3

https://amir.rachum.com/shared-libraries/

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

Finding shared libraries at run time

When resolving dependencies in dynamic dependency list, DL
deals with each dependency string as follows:

If the string contains a slash ⇒ interpret dependency as a
relative or absolute pathname
Otherwise, search for shared library using these rules

1 If calling object has DT_RPATH list and does not have
DT_RUNPATH list, search directories in DT_RPATH list

2 If LD_LIBRARY_PATH defined, search directories it specifies
For security reasons, LD_LIBRARY_PATH is ignored in “secure”
mode (set-UID and set-GID programs, etc.)

3 If calling object has DT_RUNPATH list, search directories in
that list

4 Check /etc/ld.so.cache for a corresponding entry
5 Search /lib and /usr/lib (in that order)

Or /lib64 and /usr/lib64
[TLPI §41.11]

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-18 §4.4

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

Exercises

1 The directory shlibs/mysleep contains two files:
mysleep.c: implements a function, mysleep(nsecs), which prints a
message and calls sleep() to sleep for nsecs seconds.
mysleep_main.c: takes one argument that is an integer string.
The program calls mysleep() with the numeric value specified in
the command-line argument.

Using these files, perform the following steps to create a shared library
and executable in the same directory. (You may find it easiest the write
a script to perform the necessary commands to build the shared library
and executable; you can then modify that script in the next exercise.)

Build a shared library from mysleep.c. (You do not need to
create the library with a soname or to create the linker and soname
symbolic links.)

[Exercise continues on next slide]

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-20 §4.5

Exercises

Compile and link mysleep_main.c against the shared library to
produce an executable that embeds an rpath list with the run-time
location of the shared library, specified as an absolute path
(e.g., use the value of $PWD).
Verify that you can successfully run the executable without the use
of LD_LIBRARY_PATH.

If you find that you can’t run the executable successfully, you
may be able to debug the problem by inspecting the rpath of
the executable:
objdump -p mysleep_main | grep 'R[UN]*PATH'

Try moving (not copying!) both the executable and the shared
library to a different directory. What now happens when you try to
run the executable? Why?

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-21 §4.5

Exercises

2 Now employ an rpath list that uses the $ORIGIN string:
Modify the previous example so that you create an executable with
an rpath list containing the string $ORIGIN/sub.
" Remember to use single quotes around $ORIGIN!
Copy the executable to some directory, and copy the shared library
to a subdirectory, sub, under that directory. Verify that the
program runs successfully.
If you move both the executable and the directory sub (which still
contains the shared library) to a different location, is it still
possible to run the executable?
Suppose you make the executable set-UID-root as follows:
sudo chown root mysleep_main
sudo chmod u+s mysleep_main

What happens when you now try to run the executable?

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-22 §4.5

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

Run-time symbol resolution

Suppose main program and shared library both define a
function xyz(), and another function inside library calls xyz()

To which symbol does reference to xyz() resolve?
The results may seem a little surprising:
$ cd shlibs/sym_res_demo
$ cc -g -c -fPIC -Wall foo.c
$ cc -g -shared -o libfoo.so foo.o
$ cc -g -o prog prog.c libfoo.so
$ LD_LIBRARY_PATH=. ./prog
main-xyz

Definition in main program overrides version in library!
Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-24 §4.6

Symbol interposition

When a symbol definition inside an object is overridden by an
outside definition, we say symbol has been interposed

Interposition can occur for both functions and variables
Surprising, but good historical reason for this behavior
Shared libraries are designed to mirror traditional static
library semantics:

Definition of global symbol in main program overrides version
in library
Global symbol appears in multiple libraries?

⇒ reference is resolved to first definition when scanning
libraries in left-to-right order as specified in static link
command line

Interposition behavior made transition from static to shared
libraries easier

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-25 §4.6

Interposition vs libraries as self-contained subsystems

Symbol interposition semantics conflict with model of
shared library as a self-contained subsystem

Shared library can’t guarantee that reference to its own
global symbols will bind to those symbols at run time
Properties of shared library may change when it is
aggregated into larger system

Can sometimes be desirable to force symbol references within
a shared library to resolve to library’s own symbols

I.e., prevent interposition by outside symbol definition

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-26 §4.6

Forcing global symbol references to resolve inside library

–Bsymbolic linker option causes references to global symbols
within shared library to resolve to library’s own symbols
$ cd shlibs/sym_res_demo
$ cc -g -c -fPIC -Wall foo.c
$ cc -g -shared -Wl,-Bsymbolic -o libfoo.so foo.o
$ cc -g -o prog prog.c libfoo.so
$ LD_LIBRARY_PATH=. ./prog
foo-xyz

Adds ELF DF_SYMBOLIC flag in .dynamic section of object
Or DT_SYMBOLIC tag in older binaries

To see if object was built with this option, use either of:
objdump -p libfoo.so | grep SYMBOLIC
readelf -d libfoo.so | grep SYMBOLIC

DF_SYMBOLIC flag in a library affects only the library itself
(not dependencies of the library)
More extensive example: shlibs/demo_Bsymbolic

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-27 §4.6

Forcing global symbol references to resolve inside library

" Problem: –Bsymbolic affects all symbols in shared library!
§

And there are other problems...
Preferable to control “local reference binds to local
definition” behavior on a per-symbol basis

Other techniques (described later) allow this ©

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-28 §4.6

Symbol resolution and library load order

.......main_prog.......
/ | \

libx1.so liby1.so libz1.so
| | abc(){...} | call abc()
| | |

libx2.so liby2.so libz2.so
abc(){...} xyz(){...} |
xyz(){...} libz3.so

xyz(){...}

Main program has three dynamic dependencies
Some libraries on which main has dependencies in turn have
dependencies

Note: main program has no direct dependencies other than
libx1.so, liby1.so, and libz1.so

Likewise, libz1.so has no direct dependency on libz3.so

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-29 §4.6

Symbol resolution and library load order

.......main_prog.......
/ | \

libx1.so liby1.so libz1.so
| | abc(){...} | call abc()
| | |

libx2.so liby2.so libz2.so
abc(){...} xyz(){...} |
xyz(){...} libz3.so

xyz(){...}

libx2.so and liby1.so both define public function abc()
When abc() is called from inside libz1.so, which instance
of abc() is invoked?

Call to abc() resolves to definition in liby1.so

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-30 §4.6

Symbol resolution and library load order

.......main_prog.......
/ | \

libx1.so liby1.so libz1.so
| | abc(){...} | call abc()
| | |

libx2.so liby2.so libz2.so
abc(){...} xyz(){...} |
xyz(){...} libz3.so

xyz(){...}

Dependent libraries are added in breadth-first order
Immediate dependencies of main program are loaded first
Then dependencies of those dependencies, and so on

Libraries that are already loaded are skipped (but are reference
counted)

Symbols are resolved by searching libraries in load order

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-31 §4.6

Symbol resolution and library load order

.......main_prog.......
/ | \

libx1.so liby1.so libz1.so
| | abc(){...} | call abc()
| | | call xyz()

libx2.so liby2.so libz2.so
abc(){...} xyz(){...} |
xyz(){...} libz3.so

xyz(){...}

A quiz...
libx2.so, liby2.so, and libz3.so all define public
function xyz()
When xyz() is called from inside libz1.so, which instance
of xyz() is invoked?

Call to xyz() resolves to definition in libx2.so

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-32 §4.6

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

Link-map lists (“namespaces”)

The set of all objects that have been loaded by application is
recorded in a link-map list (AKA “namespace”)

Doubly linked list that is arranged in library load order
Main program is at front of link map

See definition of struct link_map in <link.h>
dl_iterate_phdr(3) can be used to iterate through list

Example program: shlibs/dl_iterate_phdr

(See also dlinfo(3), which obtains info about a dynamically loaded object)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-34 §4.7

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

The global look-up scope

In most cases, symbol resolution is performed via an ordered
search of objects listed in the global look-up scope (GLS)
GLS is a list of following objects (in this order)

The main program
All dependencies of main, loaded in breadth-first order
Libraries opened with dlopen(RTLD_GLOBAL)

Order of objects in GLS is similar to link-map list order
(There can be some differences when dlopen() is used)

In some cases, symbol look-ups may search additional scopes
E.g., “local” scope and “self” scope
See discussion of Look-up scopes (later)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-36 §4.8

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

The LD_DEBUG environment variable

LD_DEBUG can be used to trace operation of dynamic linker
LD_DEBUG="value" prog

value is one or more words separate by space/comma/colon
Ignored (for security reasons) in privileged programs
To send trace output to file (instead of stderr), use
LD_DEBUG_OUTPUT=path
To list LD_DEBUG options, without executing program:
$ LD_DEBUG=help ./prog
Valid options for the LD_DEBUG environment variable are:

libs display library search paths
reloc display relocation processing
files display progress for input file
symbols display symbol table processing
bindings display information about symbol binding
versions display version dependencies
scopes display scope information
all all previous options combined
statistics display relocation statistics
unused determined unused DSOs
help display this help message and exit

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-38 §4.9

The LD_DEBUG environment variable

libs: show locations where each library is searched for
files: emit message as each library is opened
reloc: emit message at start of relocation processing for
each object
symbols: for each symbol relocation, show which library
symbol tables are searched
bindings: for each symbol relocation, show object
containing definition to which symbol binds

Corresponds to final entry shown by symbols (unless symbol
is undefined)

versions: display version dependency checks that are
performed for each object

Relates to symbol-versioned libraries

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-39 §4.9

The LD_DEBUG environment variable

All of preceding also cause DL to display messages when
Each object’s constructors and destructors are executed
On transfer of control to main()

scopes: display search scopes for symbol relocation (objects
that will be searched during relocation for this object)

See the discussion of Look-up scopes (later)
unused: used to implement “ldd -u” (in conjunction with
setting LD_TRACE_LOADED_OBJECTS=1)

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-40 §4.9

LD_DEBUG example

(Abridged) example of output from LD_DEBUG:
$ LD_DEBUG="reloc symbols bindings" ./prog
...
32150: relocation processing: ./prog
...
32150: symbol=x; lookup in file=./prog [0]
32150: symbol=x; lookup in file=./libdemo.so.1 [0]
32150: binding file ./prog [0] to ./libdemo.so.1 [0]: normal symbol `x'

“relocation processing” message from reloc
One message per library

“symbol...lookup in file” messages from symbols
One group of messages for each symbol relocation

“binding file...symbol” message from bindings
One message for each relocated symbol, showing origin of
reference, object containing defn, and symbol name

Number at start of each line is PID of process
Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-41 §4.9

LD_DEBUG example

Another LD_DEBUG example:
$ LD_DEBUG=scopes date
21945:
21945: Initial object scopes
21945: object=date [0]
21945: scope 0: date /lib64/libc.so.6 /lib64/ld-linux-x86-64.so.2
...

LD_DEBUG=scopes shows look-up scopes of each loaded
object
Here, we see the global look-up scope that is visible to the
executable object, "date"

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-42 §4.9

Outline
4 The Dynamic Linker 4-1
4.1 The dynamic linker 4-3
4.2 Rpath: specifying library search paths in an object 4-5
4.3 Dynamic string tokens 4-12
4.4 Finding shared libraries at run time 4-17
4.5 Exercises 4-19
4.6 Symbol resolution and symbol interposition 4-23
4.7 Link-map lists (namespaces) 4-33
4.8 The global look-up scope 4-35
4.9 LD_DEBUG: tracing the dynamic linker 4-37
4.10 Exercises 4-43

Exercises

The files in the directory shlibs/sym_res_load_order set up the scenario
shown earlier under the heading Symbol resolution and library load order
(slide 4-32). (You can inspect the source code used to build the various
shared libraries to verify this.) The main program uses dl_iterate_phdr() to
display the link-map order of the loaded shared objects.

1 Use make(1) to build the shared libraries and the main program, and
use the following command to run the program in order to verify the
link-map order and also to see which versions of abc() and xyz() are
called from inside libz1.so:
LD_LIBRARY_PATH=. ./main

2 Run the program using LD_DEBUG=libs and use the dynamic linker’s
debug output to verify the order in which the shared libraries are loaded,
and which locations are searched for each library.
$ LD_DEBUG=libs LD_LIBRARY_PATH=. ./main 2>&1 | less

[Exercise continues on the next slide]

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-44 §4.10

Exercises

3 Run the program and use the dynamic linker’s debug output to show
which libraries are searched and what definitions are finally bound for
the calls to abc() and xyz().
$ LD_DEBUG="symbols bindings" LD_LIBRARY_PATH=. ./main 2>&1 | less

4 The order in which the dependencies of main appear in the global
look-up scope is determined by the order that the libraries are specified
in the link command used to build main. Verify this as follows:

Modify the last target in the Makefile to rearrange the order in
which the libraries are specified in the command that builds main
to be: libz1.so liby1.so libx1.so
Remove the executable using make clean.
Rebuild the executable using make.
Run the executable again, and note the difference in symbol
binding for the call to xyz() and the differences in the link-map
order that is displayed by dl_iterate_phdr().

Shared Libraries on Linux ©2025 M. Kerrisk The Dynamic Linker 4-45 §4.10

This page intentionally blank

