
Outline
5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-29
5.6 File status flags (and fcntl()) 5-35
5.7 API summary 5-40
5.8 Exercises 5-42
5.9 Other file I/O interfaces 5-46

What’s the problem?

Suppose we want to write data at end of a file. . .
What’s wrong with this approach?
lseek(fd, 0, SEEK_END);
write(fd, buf, len);

Race condition: Another program might append data to file
between lseek() and write()

⇒ we will overwrite that data
Need to ensure two steps are executed atomically

i.e., no other process / thread can operate on file between
two steps

Solution: open() O_APPEND flag
⇒ write() atomically seeks to EOF and writes

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-18 §5.3

Atomicity

Various parts of system call API provide an atomicity guarantee
that is necessary to achieve correct results

Another example: ensuring we are creator of a file
Wrong way:

open once without O_CREAT;
if that fails (with ENOENT), open a second time with O_CREAT

Right way: open(..., O_CREAT | O_EXCL, ...)
Atomically check that file does not exist and if so, create it

[TLPI §5.1]
System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-19 §5.3

Outline
5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-29
5.6 File status flags (and fcntl()) 5-35
5.7 API summary 5-40
5.8 Exercises 5-42
5.9 Other file I/O interfaces 5-46

Relationship between file descriptors and open files

Multiple file descriptors can refer to same open file
3 kernel data structures describe relationship:

Process A

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 20

Process B

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 3

Table of open file

descriptions (system-wide)

file

offset

status

flags

inode

ptr
0

23

73

86

Inode table

(system-wide)

file metadata;

data block ptrs

224

1976

5139

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-21 §5.4

File descriptor table

Per-process table with one entry for each FD opened by process:
Flags controlling operation of FD (close-on-exec flag)
Reference to open file description
struct fdtable in include/linux/fdtable.h

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-22 §5.4

Table of open file descriptions (open file table)

System-wide table, one entry for each open file on system:
File offset
File access mode (R / W / R-W, from open())
File status flags (from open())
Reference to inode object for file
struct file in include/linux/fs.h

Following terms are commonly treated as synonyms:
open file description (OFD) (POSIX)
open file table entry or open file handle

" Ambiguous terms; POSIX terminology is preferable

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-23 §5.4

(In-memory) inode table

System-wide table drawn from file inode information in filesystem:
File type (regular file, FIFO, socket, . . .)
File permissions
Other file properties (size, timestamps, . . .)
struct inode in include/linux/fs.h

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-24 §5.4

Duplicated file descriptors (intraprocess)

A process may have multiple FDs referring to same OFD
Achieved using dup() or dup2()

Process A

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 20

Process B

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 3

Table of open file

descriptions (system-wide)

file

offset

status

flags

inode

ptr
0

23

73

86

Inode table

(system-wide)

file metadata;

data block ptrs

224

1976

5139

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-25 §5.4

Duplicated file descriptors (between processes)

Two processes may have FDs referring to same OFD
Can occur as a result of fork()

Process A

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 20

Process B

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 3

Table of open file

descriptions (system-wide)

file

offset

status

flags

inode

ptr
0

23

73

86

Inode table

(system-wide)

file metadata;

data block ptrs

224

1976

5139

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-26 §5.4

Distinct open file table entries referring to same file

Two processes may have FDs referring to distinct OFDs that refer
to same inode

Two processes independently open()ed same file

Process A

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 20

Process B

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 3

Table of open file

descriptions (system-wide)

file

offset

status

flags

inode

ptr
0

23

73

86

Inode table

(system-wide)

file metadata;

data block ptrs

224

1976

5139

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-27 §5.4

Why does this matter?

Two different FDs referring to same OFD share file offset
(File offset == location for next read()/write())
Changes (read(), write(), lseek()) via one FD visible via other
FD
Applies to both intraprocess & interprocess sharing of OFD

Similar scope rules for status flags (O_APPEND, O_SYNC, . . .)
Changes via one FD are visible via other FD

(fcntl(F_SETFL) and fcntl(F_GETFL))

Conversely, changes to FD flags (held in FD table) are
private to each process and FD
kcmp(2) KCMP_FILE operation can be used to test if two
FDs refer to same OFD

Linux-specific

[TLPI §5.4]
System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-28 §5.4

Outline
5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-29
5.6 File status flags (and fcntl()) 5-35
5.7 API summary 5-40
5.8 Exercises 5-42
5.9 Other file I/O interfaces 5-46

A problem

./myprog > output.log 2>&1

What does the shell syntax, 2>&1, do?
How does the shell do it?
Open file twice, once on FD 1, and once on FD 2?

FDs would have separate OFDs with distinct file offsets ⇒
standard output and error would overwrite
File may not even be open()-able:

e.g., ./myprog 2>&1 | less

Need a way to create duplicate FD that refers to same OFD

[TLPI §5.5]
System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-30 §5.5

Duplicating file descriptors

#include <unistd.h>
int dup(int origfd);

Arguments:
origfd : an existing file descriptor

Returns new file descriptor that refers to same OFD
New file descriptor is guaranteed to be lowest available

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-31 §5.5

Duplicating file descriptors

FDs 0, 1, and 2 are normally always open, so shell can
achieve 2>&1 redirection by:
close(STDERR_FILENO); /* Frees FD 2 */
newfd = dup(STDOUT_FILENO); /* Reuses FD 2 */

But what if FD 0 had been closed beforehand?
dup() would reuse FD 0...

We need a better API

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-32 §5.5

Duplicating file descriptors

#include <unistd.h>
int dup2(int origfd, int newfd);

Like dup(), but uses newfd for the duplicate FD
Silently closes newfd if it was open
Close + reuse of newfd is done as an atomic step

Important: otherwise, newfd might be re-used in between

Does nothing if newfd == origfd
Returns new file descriptor (i.e., newfd) on success

dup2(STDOUT_FILENO, STDERR_FILENO);
See dup2(2) manual page for more details

[TLPI §5.5]
System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-33 §5.5

Understanding dup2(origfd, newfd)

FD table

origfd

newfd

OFD table

OFD-a

OFD-b

inode table

inode-a

inode-b

FD table

origfd

newfd

OFD table

OFD-a

inode table

inode-a

If newfd was an open FD, OFD-b will be released if newfd was the last
FD that referred to it

After dup2(), origfd and newfd share file offset and file status flags

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-34 §5.5

Outline
5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-29
5.6 File status flags (and fcntl()) 5-35
5.7 API summary 5-40
5.8 Exercises 5-42
5.9 Other file I/O interfaces 5-46

File status flags

Control semantics of I/O on a file
(O_APPEND, O_NONBLOCK, O_SYNC, . . .)

Associated with open file description
Set when file is opened
Can be retrieved and modified using fcntl()

[TLPI §5.3]
System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-36 §5.6

fcntl() : file control operations

#include <fcntl.h>
int fcntl(int fd, int cmd /* , arg */);

Performs control operations on an open file
Arguments:

fd : file descriptor
cmd : the desired operation
arg : optional, type depends on cmd

Return on success depends on cmd ; –1 returned on error
Many types of operation

file locking, signal-driven I/O, file descriptor flags . . .

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-37 §5.6

Retrieving file status flags and access mode

Retrieving flags (both access mode and status flags)
int flags = fcntl(fd, F_GETFL);

Check access mode
int amode = flags & O_ACCMODE;
if (amode == O_RDONLY || amode == O_RDWR)

printf("File is readable\n");

" ’read’ and ’write’ are not separate bits!
if (flags & O_RDONLY) /* Wrong!! */

printf("File is readable\n");

Access mode is a 2-bit field that is an enumeration:
00 == O_RDONLY; 01 == O_WRONLY; 10 == O_RDWR
(O_ACCMODE == 112)

Access mode can’t be changed after file is opened
System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-38 §5.6

Retrieving and modifying file status flags

Retrieving file status flags
int flags = fcntl(fd, F_GETFL);
if (flags & O_NONBLOCK)

printf("Nonblocking I/O is in effect\n");

Setting a file status flag
int flags = fcntl(fd, F_GETFL); /* Retrieve flags */
flags |= O_APPEND; /* Set "append" bit */
fcntl(fd, F_SETFL, flags); /* Modify flags */

" Not thread-safe...
(But in many cases, flags can be set when FD is created, e.g., by
open())

Clearing a file status flag
int flags = fcntl(fd, F_GETFL); /* Retrieve flags */
flags &= ~O_APPEND; /* Clear "append" bit */
fcntl(fd, F_SETFL, flags); /* Modify flags */

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-39 §5.6

Outline
5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-29
5.6 File status flags (and fcntl()) 5-35
5.7 API summary 5-40
5.8 Exercises 5-42
5.9 Other file I/O interfaces 5-46

API summary

// Adjust file offset:
off_t new_offset = lseek(int fd, off_t offset, int whence);

// whence is SEEK_SET / SEEK_CUR / SEEK_END

// Fetch / modify file status flags:
int flags = fcntl(fd, F_GETFL); // Fetch status flags and

// access mode
int fcntl(fd, F_SETFL, flags); // Update status flags

// File descriptor duplication:
int newfd dup(int origfd); // Make lowest unused FD a

// duplicate of 'origfd'
int dup2(int origfd, int newfd); // Make 'newfd' point to same

// object as 'origfd'

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-41 §5.7

Outline
5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-29
5.6 File status flags (and fcntl()) 5-35
5.7 API summary 5-40
5.8 Exercises 5-42
5.9 Other file I/O interfaces 5-46

Exercise

1 Show that duplicate file descriptors share file offset and file status flags by writing a
program ([template: fileio/ex.fd_sharing.c]) that:

Implements the function printFileDescriptionInfo(), which, given a file
descriptor as an argument, prints the file descriptor number as well as the file
offset and the state of the O_APPEND file status flag associated with that file
descriptor. For readability, all three values should be printed on one line.
Opens an existing file (supplied as argv[1]) and duplicates (dup()) the resulting
file descriptor, to create a second file descriptor.
Uses the printFileDescriptionInfo() function to display the file offset and the
state of the O_APPEND file status flag via the first file descriptor.

Initially the file offset will be zero, and the O_APPEND flag will not be set
Changes the file offset (lseek(), slide 5-5) and enables (turns on) the O_APPEND
file status flag (fcntl(), slide 5-39) via the second file descriptor.
Uses the printFileDescriptionInfo() function to display the file offset and the
state of the O_APPEND file status flag via the first file descriptor.

Hints:
Remember to update the Makefile!
while inotifywait -q . ; do echo -e '\n\n'; make; done

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-43 §5.8

Exercise

2 U U U The program fileio/fd_overwrite_test.c can be used to demonstrate
that if a program opens the same file twice, the two file descriptors do not share a
file offset, and thus writes via one file descriptor will overwrite writes via the other
file descriptor. By contrast, if a program opens the file and duplicates the resulting
file descriptor, then the two file descriptors do share a file offset, and writes via one
file descriptor will not overwrite writes via the other file descriptor. The program is
used with a command-line as follows:

$./fd_overwrite [-d] <file> <string>...

By default, the program open()s the specified file twice, but if the –d option is
specified, then it open()s the file once and duplicates the resulting file descriptor.
The remaining arguments are strings that are alternately written to the two file
descriptors (thus, the first string is written to FD 1, the second to FD 2, the third to
FD 1, and so on).

Run the program with the following two command lines, and explain the output
that appears in the two files:

$./fd_overwrite_test x a A b B c C
$./fd_overwrite_test -d y a A b B c C

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-44 §5.8

