
man7.org
Training and Consulting

Building and Using Shared Libraries on Linux
Course code: M7D-SHLIB04

This course provides a thorough understanding of the process of
designing, building, and using shared libraries on Linux. Detailed
presentations coupled with carefully designed practical exercises pro-
vide participants with the knowledge needed to understand, design,
create, and deploy shared libraries.

Audience and prerequisites
The primary audience comprises designers and programmers
building and deploying shared libraries on Linux. Systems
administrators are likely to also find the course of benefit
for the purpose of troubleshooting problems with shared li-
braries.

Participants should have a good reading knowledge of
the C programming language and some programming ex-
perience in a language suitable for completing the course
exercises (e.g., C, C++). No previous experience of working
with shared libraries is required.

Course materials
• A course book (written by the trainer) that includes all

course slides and exercises
• An electronic copy of the trainer’s book, The Linux Pro-

gramming Interface
• A source code tarball containing all of the example pro-

grams written by the trainer to accompany the presenta-
tion

Course duration and format
2.5 days, with around 40% devoted to practical sessions.

Course inquiries and bookings
For inquiries about courses and consulting, you can contact
us in the following ways:

• Email: training@man7.org
• Phone: +49 (89) 2155 2990 (German landline)

Prices and further details
For course prices, upcoming course dates, and further infor-
mation about the course, please visit the course web page,
http://man7.org/training/shlib/.

About the trainer

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

• He has been programming on UNIX systems
since 1987 and began teaching UNIX system
programming courses in 1989.

• He is the author of The Linux Programming
Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

• He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel–user-space APIs.

• Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

http://man7.org/training/ k training@man7.org (v2024-03-27 #34df7665) Page 1

http://man7.org/training/shlib/
http://man7.org/training/


Building and Using Shared Libraries on Linux: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

1. Course Introduction
2. Fundamentals of Shared Libraries

• Background
• The static linker and the dynamic linker
• Static vs shared libraries
• Basics of shared library creation and use
• Position-independent code (PIC)
• The shared library soname
• In pictures: library creation, linking, and loading

3. Versioning and Installation

• Shared library versioning
• Shared library real names, sonames, and linker

names
• Installing shared libraries
• ldconfig

4. The Dynamic Linker

• Rpath: specifying library search paths in an
object

• Dynamic string tokens
• Finding shared libraries at run time
• Symbol resolution and symbol interposition
• Link-map lists
• The global look-up scope
• LD_DEBUG: tracing the operation of the dynamic

linker

5. ELF and Program Execution

• ELF file layout
• The program header table (PHT)
• The section header table (SHT)
• Program header table vs section header table
• ELF sections
• Useful commands: readelf and objdump
• How programs get run

6. Dynamically Loaded Libraries (dlopen)

• Opening a shared library: dlopen()
• Obtaining the address of a symbol: dlsym()
• The dlopen API: example
• The dlopen API: further details

7. Shared Libraries and the Static Linker

• Recording dynamic dependencies
• Handling secondary dependencies at link time
• How the static linker finds library dependencies

8. Symbol Visibility

• Symbol attributes: binding and visibility
• Controlling symbol visibility
• Controlling visibility on a per-symbol basis
• Controlling symbol visibility: dlopen()-ed

libraries
• Using version scripts to control symbol visibility
• Look-up scopes
• LD_DEBUG=scopes

9. Preloading

• Preloading shared libraries

10. Weak Symbols (*)

• Weak symbols
• Use cases for weak symbols

11. Symbol Versioning

• Creating a symbol-versioned library
• ELF and symbol versioning
• Advantages of symbol versioning
• Further details on symbol versioning
• The library base version

12. Symbol Versioning: Further Topics (*)

• Transitioning an existing library to symbol
versioning

• Symbol versioning design approaches
• Symbol-version matching rules
• Addendum: a few C++ details

13. Lazy Binding (*)

• Lazy binding

14. GOT and PLT (*)

• The GOT and PLT
• Relocation and the PLT: in pictures
• Relocation and the PLT: code
• Observing the effect of lazy binding on the GOT
• Performance considerations

http://man7.org/training/ k training@man7.org (v2024-03-27 #34df7665) Page 2

http://man7.org/training/

	Audience and prerequisites
	Course materials
	Course duration and format
	Course inquiries and bookings
	Prices and further details
	toAbout the trainer

